Развитие риска на промышленных объектах

На процесс зарождения и развития риска оказывает свое влияние многообразие факторов и условий (рис. 1).

 
  Развитие риска на промышленных объектах - student2.ru

Знакомство с приведенной схемой позволяет выделить целый ряд первопричин риска: отказы в работе узлов и оборудования вследствие их конструктивных недостатков, плохого технического изготовления или нарушения правил технического обслуживания; отклонения от нормальных условий эксплуатации: ошибки персонала; внешние воздействия и пр. Вследствие возможности возникновения указанных причин опасные промышленные объекты постоянно находятся в неустойчивом состоянии, которое по отношению к безопасности производства становится особенно критичным при возникновении аварийных ситуаций на объектах.

Риск возникает при следующих необходимых и достаточных условиях:

- существование фактора риска (источника опасности);

- присутствие данного фактора риска в определенной, опасной (или вредной) для объектов воздействия дозе;

- подверженность (чувствительность) объектов воздействия к факторам опасностей

Между авариями в самых разных отраслях можно заметить явное сходство. Обычно аварии предшествует накопление дефектов в оборудовании или отклонения от нормального хода процессов. Эта фаза может длиться минуты, сутки или даже годы. Сами по себе дефекты или отклонения еще не приводят к аварии, но готовят почву для нее. Операторы, как правило, не замечают этой фазы из-за невнимания к регламенту или недостатка информации о работе объекта, так что у них не возникает чувства опасности. На следующей фазе происходит неожиданное или редкое событие, которое существенно меняет ситуацию. Операторы пытаются восстановить нормальный ход технологического процесса, но, не обладая полной информацией, зачастую только усугубляют развитие аварии. Наконец, на последней фазе еще одно неожиданное событие - иногда совсем незначительное - играет роль толчка, после которого техническая система перестает подчиняться людям, и происходит катастрофа.

Риск является неизбежным, сопутствующим фактором промышленной деятельности. Риск о6ъективен, для него характерны неожиданность, внезапность, наступления, что предполагает прогноз риска, его анализ, оценку и управление -ряд действий по недопущению факторов риска или ослаблению воздействия опасности.

3. Основы методологии анализа и управления риском

3.1 Анализ риска: понятие и место в обеспечении безопасности технических систем

При разработке проблем риска и технологической безопасности самое пристальное внимание уделяется системному подходу к учету и изучению разнообразных факторов, влияющих на показатели риска, именуемому анализом риска

Анализ риска или риск-анализ (risk analysis) - процесс идентификации опасностей и оценки риска для отдельных лиц, групп населения, объектов, окружающей природной среды и других объектов рассмотрения.

Напомним что, под опасностью понимается источник потенциального ущерба или вреда или ситуация с возможностью нанесения ущерба, а под идентификацией опасности - процесс выявления и признания, что опасность существует, и определение ее характеристик.

Существует много подобных формулировок этого понятия, но в общем виде под анализом риска подразумевается процесс выявления опасности и оценки возможных негативных последствий в результате возникновения нарушений в работе конкретных технологических систем и представления этих последствий в количественных показа гелях.

В США вместо термина "анализ риска" используют "анализ опасностей" (process hazard analysis), имеющий практически то же значение.

Анализ риска - во многом субъективный процесс, в ходе которого учитываются не только количественные показатели, но и показатели, не поддающиеся формализации, такие, как" позиции и мнения, различных общественных группировок, возможность компромиссных решений, экспертные оценки и т.д.

Многообразие видов производственной деятельности, специфика, промышленных объектов, их принадлежность к самым различным отраслям отражает многоаспектность проблемы анализа риска.

Особенность анализа технологического риска заключается в том, что в ходе его рассматриваются потенциально негативные последствия, которые могут возникнуть в результате отказа в работе технических систем, сбоев в технологических процессах или ошибок со стороны обслуживающего персонала. Разумеется, что можно рассматривать и негативные воздействия на людей, и окружающую природную среду при безаварийном функционировании производства (за счет выбросов или утечки вредных или опасных веществ, неочищенных стоков и т.д.).

Результаты анализа риска имеют существенное значение для принятия обоснованных и рациональных решений при определении места размещения и проектировании производственных объектов, при транспортировании и хранении опасных веществ и материалов. В процессе анализа риска находят широкое применение формализованные процедуры и учет разнообразных ситуаций, с которыми может столкнуться управляющий персонал в процессе своей деятельности, особенно при возникновении чрезвычайной обстановки. Неопределенность, в условиях которой во многих случаях должны приниматься управленческие решения, накладывает отпечаток на методику, ход и конечные результаты анализа риска. Методы, используемые в процессе анализа, должны быть ориентированы, прежде всего, на выявление и оценку возможных потерь в случае аварии, стоимости обеспечения безопасности и преимуществ, получаемых при реализации того или иного проекта.

Анализ риска имеет ряд общих положений независимо от конкретной методики анализа и специфики решаемых задач. Во-первых, общей является задача определения допустимого уровня риска, стандартов безопасности обслуживающего персонала, населения и защиты окружающей природной среда. Во - вторых определение допустимого уровня риска происходит, как правило, в условиях недостаточной или непроверенной информации, особенно когда это касается новых технологических процессов, или новой техники. В - третьих, в ходе анализа в значительной мере приходится решать вероятностные задачи, что может привести к существенным расхождениям в получаемых результатах. В-четвертых, анализ риска нужно рассматривать, как процесс решения многокритериальных задач, которые могут возникнуть как компромисс между сторонами, заинтересованными в определенных результатах анализа.

Анализ риска может быть определен как процесс решения сложной задачи, требующий рассмотрения широкого круга вопросов и поведения комплексного исследования и оценки технических, экономических, управленческих, социальных, а в ряде случаев и политических факторов.

Анализ риска должен дать ответы на три основных вопроса:

1. Что плохого может произойти? (Идентификация опасностей).

2. Как часто это может случаться? (Анализ частоты).

3. Какие могут быть последствия? (Анализ последствий).

Основной элемент анализа риска - идентификация опасности (обнаружение возможных нарушений), которые могут привести к негативным последствиям. Выраженный в наиболее общем виде процесс анализа риска может быть представлен как ряд последовательных событий:

1. Планирование и организация работ.

2. Идентификация опасностей.

2.1. Выявление опасностей.

2.2. Предварительная оценка характеристик опасностей.

3. Оценка риска.

3.1.Анализ частоты.

3.2.Анализ последствий.

3.3.Анализ неопределенностей.

4.Разработка рекомендаций по управлению риском.

Первое, с чего начинается любой анализ риска - это планирование и организация работ. Анализ риска проводится в соответствии с требованиями нормативно-правовых актов длятого, чтобы обеспечить вход в процесс управления риском, однако более точный выбор задач, средств и методов анализа риска обычно не регламентируется. В документах подчеркивается, что анализ опасности должен соответствовать сложности рассматриваемых процессов, наличию необходимых данных и квалификации специалистов, проводящих анализ. При этом более простые и понятные методы анализа следует предпочитать более сложным методам, не до конца ясным и методически обеспеченным. Поэтому на первом этане необходимо:

- указать причины и проблемы, вызвавшие необходимость проведения риск-анализа;

- определить анализируемую систему и дать ее описание;

- подобрать соответствующую команду для проведения анализа:

- установить источники информации о безопасности системы;

- указать исходные данные и ограничения, обусловливающие пределы риск-анализа:

- четко определить цели риск-анализа и критерии приемлемого риска.

Во всех нормативах содержится требование документального оформления этого этапа анализа риска.

Следующий этап анализа риска - идентификация опасностей. Основная задача - выявление (на основе информации о данном объекте, результатов экспертизы и опыта работы подобных систем) и четкое описание всех присущих системе опасностей. Это ответственный этап анализа, так как невыявленные на этом этапе опасности не подвергаются дальнейшему рассмотрению и исчезают из поля зрения.

Существует целый ряд формальных методов выявления опасностей, о которых речь пойдет ниже. Здесь приводится предварительная оценка опасностей с целью выбора дальнейшего направления деятельности:

- прекратить дальнейший анализ ввиду незначительности опасностей:

- провести более детальный анализ риска;

- выработать рекомендации по уменьшению опасностей.

Исходные данные и результаты предварительной оценки опасностей также должным образом документируются. В принципе процесс риск-анализа может заканчиваться уже на этапе идентификации и опасностей.

При необходимости, после идентификации опасностей переходят к этапу оценки риска.

Наконец, последний этап анализа риска технологической системы - разработка рекомендаций, но уменьшению уровня риска (управлению риском) в случае, если степень риска выше приемлемой.

По проведенной таким образом работе все нормативные документы предписывают составление отчета, требования, к содержанию которого строго сформулированы и касаются перечисленных выше вопросов.

Множественность результатов анализа и возможность компромиссных решений дают основание считать, что анализ риска не является строго научным процессом, поддающимся проверке объективными, научными методами.

3.2 Оценка риска: понятие и место в обеспечении безопасности технических систем

С анализом риска тесно связан другой процесс - оценка риска.

Оценка риска - процесс, используемый для определения величины (меры) риска анализируемой опасности для здоровья человека, материальных ценностей, окружающей природной среды и других ситуаций, связанных с реализацией опасности. Оценка риска - обязательная часть анализа. Оценка риска включает анализ частоты, анализ последствий и их сочетаний.

В англоязычной литературе употребляют термины "risk estimation", "risk assessment", "risk evaluation", зачастую имеющие разные значения, но переводимые как оценка риска.

Оценка риска - этап, на котором идентифицированные опасности должны быть оценены на основе критериев приемлемого риска с целью выделить опасности с неприемлемым уровнем риска, и этот шаг послужит основой для разработки рекомендаций и мер по уменьшению опасностей. При этом и критерии приемлемого риска, и результаты оценки риска могут быть выражены как качественно, так и количественно.

Согласно определению, оценка риска включает в себя анализ частоты и анализ последствий. Однако, когда последствия незначительны и частота крайне мала, достаточно оценить один параметр.

Существуют четыре разных подхода к оценке риска.

Первый - инженерный. Он опирается на статистику поломок и аварий, на вероятностный анализ безопасности (ВАБ): построение и расчет так называемых деревьев событий и деревьев отказов - процесс основан на ориентированных графах. С помощью первых предсказывают, во что может развиться тот или иной отказ техники, а деревья отказов, наоборот, помогают проследить все причины, которые способны вызвать какое-то нежелательное явление. Когда деревья построены, рассчитывается вероятность реализации каждого из сценариев (каждой ветви), а затем - общая вероятность аварии на объекте.

Второй подход, модельный - построение моделей воздействия вредных факторов на человека и окружающую среду. Эти модели могут описывать как последствия обычной работы предприятий, так и ущерб от аварий на них.

Первые два подхода основаны на расчетах, однако, для таких расчетов далеко не всегда хватает надежных исходных данных.

В этом случае приемлем третий подход -экспертный: вероятности различных событий, связи между ними и последствия аварий определяют не вычислениями, а опросом опытных экспертов.

Наконец, в рамках четвертого подхода - социологического - исследуется отношение населения к разным видам риска, например с помощью социологических опросов.

То, что для определения риска используются четыре столь несхожих между собой метода, не должно удивлять. В разных задачах под риском следует понимать то вероятность какой-то аварии, то масштаб возможного ущерба от нее, а то и комбинацию двух этих величин. Описывая риск, нужно учитывать и выгоду, которую получает общество, когда на него идет (бесполезный риск недопустим, даже если он ничтожно мал). Иными словами, величина риска - это не какое-то одно число, а скорее вектор, состоящий из нескольких компонент. И поэтому мы имеем дело с так называемым многокритериальным выбором, процедура которого описывается теорией принятия решений.

Имеется много неопределенностей, связанных с оценкой риска. Анализ неопределенностей - необходимая составная часть оценки риска. Как правило, основные источники неопределенностей - информация по надежности оборудования и человеческим ошибкам, а также допущения применяемых моделей аварийного процесса. Чтобы правильно интерпретировать величины риска, надо понимать неопределенности и их причины. Анализ неопределенности - это перевод неопределенности исходных параметров и предложений, использованных при оценке риска, в неопределенность результатов.

Источники неопределенности должны по возможности идентифицироваться. Основные параметры, к которым анализ является чувствительным, должны быть представлены в результатах.

Важно подчеркнуть, что сложные и дорогостоящие расчеты зачастую тают значение риска, точность которого очень невелика. Для сложных технических систем точность расчетов индивидуального риска, даже в случае наличия всей необходимой информации, не выше одного порядка. При этом проведение полной количественной оценки риска более полезно для сравнения различных вариантов (например, размещения оборудования), чем для заключения о степени безопасности объекта. Зарубежный опыт показывает, что наибольший объем рекомендаций по обеспечению безопасности вырабатывается с применением качественных (из числа инженерных) методов анализа риска, позволяющих достигать основных целей риск-анализа при использовании меньшего объема информации и затрат труда. Однако количественные методы оценки риска всегда очень полезны, а в некоторых ситуациях - и единственно допустимы, в частности, для сравнения опасностей различной природы или при экспертизе особо опасных, сложных и дорогостоящих технических систем.

3.3 Управление риском; понятие и место в обеспечении безопасности технических систем

В исследованиях по проблеме риска возникло отдельное направление работ под общим названием "Управление риском".

Управление риском (risk management) - это часть системного подхода к принятию решений, процедур и практических мер в решении задач предупреждения или уменьшения опасности промышленных аварий для жизни человека, заболеваний или травм, ущерба материальным ценностям и окружающей природной среде

Для процесса управления риском существует несколько названии как в нашей стране (обеспечение промышленной безопасности), так и за рубежом ("safety management", "management of process hazards"), которые фактически являются синонимами.

Под этими терминами понимается совокупность мероприятий, направленных на снижение уровня технологического риска, уменьшение потенциальных материальных потерь и других негативных последствий аварий. Но сути дела, речь идет о предотвращении возникновения аварийных ситуаций на производстве и мерах но локализации негативных последствий в тех случаях, когда аварии произошли.

Особенностью этого направления является комплексность, включающая в себя различные аспекты - технические, организационно-управленческие, социально-экономические, медицинские, биологические и др.

3.4 Общность и различие процедур оценки и управления риском

Общим в оценке риска и управлением риском является то. что они - два аспекта, две стадии единого процесса принятия решения (в широком смысле слова), основанного на характеристике риска. Такая общность обусловлена их главной целевой функцией -определением приоритетов действий, направленных на уменьшение риска до минимума, для чего необходимо знать как его источники и факторы - (анализ риска), так: и наиболее эффективные пути его сокращения (управлением риском).

Взаимосвязь между оценкой риска и управлением им представлена на рис. 2.3.1

Развитие риска на промышленных объектах - student2.ru

Рис. 2. Взаимосвязь между оценкой и управлением риском:

А – область оценки риска; Б - область управления риском; В - область характеристики риска.

Развитие риска на промышленных объектах - student2.ru - прямые связи между элементами оценки и управления риском;

Развитие риска на промышленных объектах - student2.ru -обратные связи принятия решения с другими элементами оценки и управления риском.

Основное различие между двумя понятиями заключается в том, что оценка риска строится на фундаментальном, прежде всего естественнонаучном и инженерном, изучении источника (например, химического объекта) и факторов риска (например, загрязняющих веществ с учетом особенностей конкретной технологии и экологической обстановки) и механизма взаимодействия между ними. Управлением риском опирается на экономический и социальный анализ, а также на законодательную базу, которые не нужны и не используются при оценке риска. Управление риском имеет дело с анализом альтернатив по минимизации риска, т.e. является, по сути дела, частым случаем класса многокритериальных задач принятия решения в условиях неопределенности. Оценка риска служит основой для исследования и выработки мер управления риском в соответствии с алгоритмом действий (рис. 1).

Заключительная фаза процедуры оценки риска - характеристики риска -одновременно является первым звеном процедуры управления риском.

3.5 Количественные показатели риска

Для управлением риском его необходимо проанализировать и оценить. Ввиду данного в 2.3.1 определения риска, его количественный показатель представляет собой численные значения вероятности наступления нежелательного события или (и) результатов нежелательных последствий (ущерба).

Количественно риск может быть определен как частота (размеренность -обратное время) реализации опасности.

Изучение статистических данных позволяет выявить частоту возникновения опасных событий. Однако серьезность событий (даже внутри одного класса аварий) может значительно изменяться от события к событию; тогда возникает необходимость введения категорий событий (например, события с тяжелыми, средними или легкими последствиями) и рассмотрения частоты каждой из таких категорий. Последнее достигается приписыванию каждому классу или подклассу показателя риска (числа событий за определенный период времени, деленный на длительность этого периода), имеющего размеренность обратного времени. Этот показатель иногда рассматривается как мера ''вероятности'' возникновения события. Вероятностью (события в конечной схеме при классическом определении) называется отношение мощности множества элементарных исходов, составляющих это событие, к мощности всего множества элементарных исходов. Вероятность события - это действительное число, лежащее в интервале 0-1. Так, например, при бросании обычной кости вероятность события "выпадение 7" равна нулю, вероятность события "выпадения 1 или 2" равна одной шестой, вероятность события "выпадение какого-нибудь числа между 1 и 6" равна единице. Таким образом, в рассмотренном случае те связи между событиями А и В, когда только при возникновении А случается В, можно интерпретировать как вероятность.

Количественно риск может быть определен, как вероятность Р возникновения события В при наступлении события А (безразмерная величина, лежащая в пределах 0-1).

Поскольку реализация опасности явление случайное, риск опасности (как бы ни определять его - как частоту или вероятность) есть числовая характеристика соответствующей случайной величины, используемой для описания данной опасности.

Последствие Y в виде нежелательного события или ущерба может в соответствии со своей величиной описываться своими специфическими параметрами. Диапазон при этом может быть весьма широк - от экономических до этических ценностей и человеческих жертв.

Мерой возможности наступления риска служит вероятность его наступления Р.

Отсюда следует: R=Y*P.

Величина риска определяется как произведение величины нежелательного события на вероятность его наступления, т. е. как математическое ожидание величины нежелательных последствии

Обратимся вновь к функциональной модели (рис. 1). Для отображенных на ней множества исходных причин развития риска можно в общем виде записать формулу расчета в виде

R=Р1Р2Р3Р4 ,

где R - риск, т.е. вероятность нанесения определенного ущерба:

P1 - вероятность возникновения события или явления, обусловливающего формирование и действие опасных факторов;

Р2 - вероятность формирования определенных уровней физических полей, ударных нагрузок, полей концентрации вредных веществ, воздействующих на людей и другие объекты;

Р3 - вероятность того, что указанные уровни полей и нагрузок приведут к определенному ущербу,

Р4 - вероятность отказа средств защиты.

Мы узнали, что количественная мера риска может выражаться не только вероятностной величиной. Риск иногда интерпретируют как математическое ожидание ущерба, возникающего при реализации опасностей.

При определении математического ожидания величины ущерба представляется целесообразным принимать во внимание все возможные виды опасных происшествий для данного объекта и оценку риска производить по сумме произведений вероятностей указанных событий на соответствующие ущербы. В этом случае справедлива следующая зависимость:

RMO=∑Pi*Yi

где Rмo - уровень риска, выраженный через математическое ожидание ущерба,

Pi - вероятность возникновения опасного события i-ro класса:

Yi - величина ущерба при i-ом событий.

Хотя последняя интерпретация находит применение, однако вероятностная мера риска является более удобной и применяемой при решении широкого круга задач научного и практического характера, в особенности задач, касающихся промышленной безопасности.

Понятие "риск" - атрибут научного аппарата многих технических экономических, общественных и естественных наук. У каждого из них свой предмет, свой аспект, а потому в определении меры риска в безопасности выделяют социальные, профессиональные, экологические, техногенные, медико-биологические, военные и др. опасности. Таким образом, риск - мера вполне определенных опасностей. Определяя риск необходимо ответить на вопрос: риск чего? (Например, риск событий, связанных с эксплуатацией сложной технической системы - разгерметизацией оборудования, отказом средств предупреждения, ошибками человека и т. д.).

На рисунке 3 дан обзор ситуаций с риском возникновения соответствующих нежелательных событий и приведены их измерения.

При угрозе материальным ценностям риск часто измеряют в денежном выражении. Если различные последствия нежелательного события одинаковы или очень велики, то для сравнения достаточно рассматривать одни соответствующие вероятности. Наряду с этим может возникнуть угроза, которую нельзя выразить количественно, например, когда последствия события нельзя предусмотреть достаточно полно. Примером могут служить последствия выхода из строя прибора (установки и т.д.), используемого в различных областях народного хозяйства, которые поставщик оценить не может. В этом случае мерой риска остается принять вероятность превышения предела нагрузки на систему, где эксплуатировали прибор. При риске, связанном со здоровьем, последствия могут быть частично оценены количественно в таких категориях как простой в работе или расходы на оплату подменяющего персонала и т.п., страховые выплаты. При риске, связанном с летальным исходом, количественные оценки последствий в большинстве случаев отсутствуют. Особые проблемы ставят случаи, когда опасность грозит и материальным ценностям, и людям, и окружающей природе одновременно, и желательно меру такого риска оценить по нескольким компонентам.

Как уже говорилось, риск может быть явно связан с факторами, не поддающимися учету. Так, эстетический вред, наносимый построенным сооружением уникальному ландшафту, или последствия выхода из строя телецентра практически невозможно оценить.

Как и в случае других измерений, для риска могут использоваться единицы измерения, выраженные и через фундаментальные единицы.

Описанные свойства риска требуют дальнейшего рассмотрения проблемы.

Развитие риска на промышленных объектах - student2.ru

Рис. 3. Обзор ситуаций риска

3.6 Приемлемый риск

Традиционный подход к обеспечению безопасности при эксплуатации технических систем и технологий базируется на концепции "абсолютной безопасности" - ALAPA (аббревиатура от "As Low As PracticabLe AchievabLe": "настолько низко, насколько это достижимо практически"). То есть внедрение всех мер защиты, которые практически осуществимы. Как показывает практика, такая концепция неадекватна законам техносферы. Эти законы имеют вероятностный характер, и абсолютная безопасность достигается лишь в системах, лишенных запасенной энергии. Требование абсолютной безопасности, подкупающее своей гуманностью, оборачивается трагедией для людей, потому что обеспечить нулевой риск в действующих системах невозможно, и человек должен быть ориентирован на возможность возникновения опасной ситуации, т.е. ориентирован на соответствующий риск.

Современный мир отверг концепцию абсолютной безопасности и пришел к концепции "приемлемого" (допустимого) риска. Это понятие произошло от принятого в современной научной литературе термина - "принцип приемлемого риска", известного как принцип ALARA (аббревиатура от "As Low As ReasonabLe AchievabLe": "настолько низко, насколько это достижимо в пределах разумного", учитывая социальные и экономические факторы). То есть если нельзя создать абсолютно безопасные технологии, обеспечить абсолютную безопасность, то. очевидно, следует стремиться к достижению хотя бы такого уровня риска, с которым общество в данный период времени сможет смириться.

В силу этих обстоятельств в промышленно развитых странах, начиная с конца 70-х начала 80-х гг., в исследованиях, связанных с обеспечением безопасности, начался переход от концепции "абсолютной" безопасности к концепции "приемлемого" риска. Степень внедрения этой концепции в практическую деятельность сегодня различна в разных странах и в некоторых из них уже введена в законодательство. Например, в Нидерландах эта концепция в 1985 г. была принята парламентом страны в качестве государственного закона, согласно ему, вероятность смерти в течение года для индивидуума от опасностей, связанных с техносферой, >10 -6 считается недопустимой, а <10 -8 - пренебрежимой. "Приемлемый" уровень риска выбирается в диапазоне 10 -6 - 10 -8 в год, исходя из экономических и социальных причин. Для сравнения: риск смерти человека, равный 10-6, соответствует риску, которому он подвергается в течение своей поездки на автомобиле на расстояние в 100 км или полете на самолете на расстояние 650 км, или, если он выкуривает 3/4 сигареты, или в течение 15 мин занимается альпинизмом и т.д.

В Нидерландах при планировании промышленной деятельности, наряду с географическими, экономическими и политическими картами, используются и карты риска для территории страны. В этих условиях, чтобы построить промышленное предприятие и ввести его в эксплуатацию, проектировщикам требуется количественно определить уровень риска его эксплуатации и доказать правительственным органам приемлемость этого риска. При лицензировании нового крупного промышленного предприятия также требуется предоставить топографическую карту риска, которому будет подвергаться человек, оказавшийся в зоне расположения этого предприятия. На этой карте должны быть указаны замкнутые кривые равного риска, каждая из которых соответствует следующим численным значениям вероятости смерти индивидуума в течение года: 10-4 , 10-5, 10-6, 10-7 (рис. 4). Требования такого же рода предъявлены и к уже действующим предприятиям.

С другой стороны, есть уровень максимального приемлемого риска, который нельзя превосходить, каковы бы ни были расходы. Между двумя этими уровнями лежит область, в которой и нужно уменьшать риск, отыскивая компромисс между социальной выгодой и финансовыми убытками, связанными с повышением безопасности.

Решение о том, какой уровень риска считать приемлемым, а какой нет, носит не технический, а политический характер и во многом определяется экономическими возможностями страны. Правительство и парламент Нидерландов законодательно установили такие уровни. Максимальным приемлемым уровнем индивидуального риска (уже об этом мы говорили) считается величина 10-6 в год. Иными словами, вероятность гибели человека в течение года не должна превышать одного шанса из миллиона. Пренебрежимо малым считается индивидуальный риск 10-8 в год. Для факторов, которые приводят к отдаленным опасным последствиям и не имеют порога действия, приняты эти же нормы. Если такие факторы сказываются лишь на превышения порога (например, предельно допустимой концентрации вредного вещества), то максимальный приемлемый уровень риска соответствует порогу. Максимальным приемлемым уровнем риска для

 
  Развитие риска на промышленных объектах - student2.ru

экосистем считается тот, при котором может пострадать 5% видов биогеоценоза.

Рис. 4. Построение зон индивидуального риска для опасногопредприятия (а) и транспортной магистрали (б), по которой осуществляется перевозка опасных грузов:

1 - изолинии равного риска; 2, 3, 4, 5 - зона соответственно чрезвычайновысокого, высокого, приемлемого и низкого риска.

Таблица 15Критерии приемлемости риска в пяти странах

Страна Определение приемлемости надзорными органами Требуемое обоснование Использование количественных оценок риска
1 2 3 4
Великобри­тания Риск должен быть так низок, как практически возможно Доклад о деятельности определенной нормативами CIMAH Предлагаемый риск серьезных аварий 10-4 1/год на границе приемлемости
Германия Должен удовлетворять техническим правилам и не причинять ущерб окружающей среде или значительный ущерб населению Анализ безопасности последнего состояния технологии Только как часть анализа безопасности. Никакие количественные показатели на могут быть удовлетворительно определены
Франция Реальное арбитражное просвещение Оценка технического риска и экономический анализ Риск неприемлемых последствий, который не должен превышать 10-6 1/год. рассматривается скорее как цель, чем требование
Дания Требования выражены в общих терминах. Загрязнение окружающей среды не выше пороговых значений Должен быть приемлем для Комитета соответствующей организации Риск, не превышающий 10-6 1/год приемлем
Нидерланды Опасность должна быть квантифицирована настолько точно, насколько возможно Доклад по безопасности должен быть одобрен надзорным и органами и Рабочим советом. Пригодность операционного персонала должна быть оценена Анализ в терминах теории вероятности. Обеспечиваемый максимальный приемлемый индивидуальный риск смерти 10-6 1/год

Наши рекомендации