Что такое генная инженерия?

Генная инженерия – технология, с помощью молекулярно-биологических методов позволяющая изменить строение генов или внести в организм чужеродные гены с заданными функциями. При этом в организм переносится только один ген, а остальной генотип остается неизменным, кроме того, можно придать организму признаки, которые нельзя перенести путем скрещивания с близкородственными видами.

С помощью методов генной инженерии появилась возможность создать организмы с новыми, ранее не присущими им свойствами. Например, неприхотливые и дешевые в содержании, чрезвычайно быстро размножающиеся бактерии могут синтезировать нужный белок со встроенного в их генотип чужого гена. Так, с использованием генетически-модифицированных (рекомбинантных, или трансгенных) бактерий, дешево, быстро и в больших количествах получают интерферон, инсулин, некоторые другие лекарственные препараты. Генетически модифицированные растения тоже могут вырабатывать лекарственные вещества. Большинство генных модификаций сортов направлено на развитие устойчивости к сельскохозяйственным вредителям или вирусам, выживание при обработке полей гербицидами, повышение вкусовых и технических качеств.

Улучшения качества и срока хранения пищевой продукции добиваются и и другими, традиционными способами – выращивают растения с использованием большого количества химических удобрений или растительных гормонов, или обрабатывают плоды специальными сохраняющими составами. В продукты растительного и животного происхождения добавляют химические вещества – ароматизаторы, улучшители вкуса и консерванты. Генетический состав исходного организма при этом не изменяется, и к генной инженерии подобные методы улучшения качества продукции не имеют никакого отношения. Иногда недостаточно хорошо протестированные химические вещества, полученные с помощью генетически модифицированных организмов, выпускаются на рынок и зарекомендовывают себя не лучшим образом. Ошибки системы контроля продукции остаются незамеченными, и, как только потребитель слышит слово «получено с помощью генетически модифицированных организмов», во всем становится виновата генная инженерия. По сути же всё равно, каким именно образом был получен продукт – химическим синтезом, или синтезирован ГМ-организмом, он должен тщательно проверяться, и ответственность за его безопасность лежит на системе контроля за качеством продукции.

Как создают ГМП?

Регуляцией работы генов в клетке занимаются специальные белки – особые ферменты. Группа таких ферментов может разрезать и сшивать ДНК в определенных местах – в природе это происходит при осуществлении большого количества генетических процессов. Молекулярный биолог, имея в арсенале набор таких ферментов, может в пробирке «разрезать» и «сшить» куски ДНК в заданном районе, встраивая таким образом нужный ген в определенное место. При использовании классического метода рядом со встраиваемым геном, как правило, вставляется кассета устойчивости к антибиотику. Конструкция из гена и кассеты переносится в клетку хозяина, где встраивается в ДНК. Клетка получает новый ген и одновременно становится устойчивой к антибиотику – по этому легко определяемому признаку (маркеру) её можно отличить от остальных клеток, в которые перенос генетической конструкции по каким-то причинам не состоялся.

Сейчас конструкции создают таким образом, что работу гена и кассеты устойчивости к антибиотику можно регулировать – «включать» и «выключать», впоследствии удалять кассеты антибиотиковой устойчивости из ДНК, или обходиться вообще без них – например, в качестве маркеров можно использовать гены-кассеты флуоресцирующих белков, свечение которых заметно под ультрафиолетом.

Перенос генетической конструкции в бактерии несложен – обработанные по специальной технологии, бактерии сами поглощают её из среды.

Встраивание конструкции в растения производится с помощью так называемых агробактерий. В дикой природе эти бактерии инфицируют растения, вызывая рост опухолей. При этом агробактерии переносят в растительную ДНК свои гены, которые регулируют рост опухоли. Для создания генетически модифицированного растения молекулярные биологи используют специальный штамм – вместо опухолевых генов агробактерии переносят в растительную клетку гены, необходимые учёному.

Для генетической модификации некоторых растений, нечувствительных к агробактериям, применяют другие методы, например, биобаллистический. С помощью специальных установок микрочастицы золота или вольфрама с нанесенной на них ДНК ускоряют при помощи сжатого гелия, и они проникают в ДНК клеток-мишени, а затем трансгенная конструкция встраивается в заданный участок ДНК.

Полученное трансгенное растение выращивают сначала в лаборатории, затем на опытных делянках, и после серий обязательных тестов на безопасность, длящихся в течение нескольких лет, рекомендуют для выпуска на рынок.

Сейчас в США, Канаде, Китае и других странах выращиваются около двух десятков трансгенных растительных культур. Это картофель и кукуруза, устойчивые к насекомым-вредителям; сорт томата и сорт дыни с продленным сроком хранения плодов; хлопок, устойчивый к гербициду, применяемому для уничтожения сорняков; устойчивый к гербициду рапс, из которого получают растительное масло; устойчивая к гербициду соя. Кроме того, разработан и практически готов к внедрению на рынок трансгенный рис - "золотой рис": разновидность риса, генетически улучшенного с помощью бета-каротина, который в организме человека превращается в витамин А. Разработана еще одна разновидность риса, которая отличается повышенным содержанием усваиваемого железа. Нехватка только этих витамина А и железа может вызывать сильную анемию, отставание в умственном развитии, слепоту и даже смерть. "Золотой рис" может сыграть свою роль в решении проблемы дефицита этих микроэлементов у населения стран Азии, где рис является основным продуктом питания. Ведутся успешные разработки по внедрению гена, отвечающего за синтез жирных кислот растительного типа, в свинью. Таким образом, свиное сало будет иметь состав, близкий к растительным жирам («кошерное сало»).

Безопасность

Безопасны ли для употребления в пищу трансгенные растения? Дискуссии по этому поводу не утихают. Потенциальные риски, связанные с использованием ГМ-организмов, сводятся, в основном, к следующему: 1) опасность пищи, приготовленной из ГМ-организмов, связанная с вероятным влиянием введенных генов на здоровье человека; 2) разрушение природных экосистем и нарушение экологического равновесия при массовом открытом культивировании трансгенных растений.

К сожалению, противники ГМ-технологий не могут обосновать свои опасения на сколько-нибудь приличном научном уровне, поскольку количество корректных научных работ, затрагивающих тему безопасности ГМ-организмов, весьма ограничено. Связано это с трудностями объективной и корректной постановки экспериментов по исследованию безопасности. Защитники ГМО обычно утверждают: «Если это не безопасно – докажите!», потому что в публикациях в научных журналах превалируют данные, подтверждающие безопасность (по крайней мере, в условиях поставленных экспериментов) использования ГМ-растений на полях и в пищу, но эти данные часто игнорируются и замалчиваются при вынесении вопросов безопасности биотехнологий на широкое публичное обсуждение. Ученые - биохимики, физиологи и молекулярные биологи растений Национальной Академии наук США и еще 11-ти научных сообществ из разных стран мира – утверждают, что с научной точки зрения не существует никакого различия между растениями, полученными с использованием генной инженерии и растениями, выведенными традиционными методами селекции при культивировании их на полях и использовании в производстве, поскольку сам метод получения трансгенных растений не вызывает никаких опасений. Именно поэтому проблемы безопасности и применения ГМ-растений должны решаться на уровне индивидуального продукта – с помощью различных тестов, подтверждающих соответствие исследуемой продукции существующим стандартам и нормам.

Наши рекомендации