Подземные термальные воды (гидротермы)
Тепловой режим земной коры. Источники геотермального тепла.
Тепловой режим земной коры
Под геотермикой (от греческих слов «гео» – земля и «термо» – тепло) понимается наука, изучающая тепловое состояние земной коры и Земли в целом, его зависимость от геологического строения, состава горных пород, магматических процессов и целого ряда других факторов.
Критерием теплового состояния земного шара является поверхностный градиент температуры, позволяющий судить о потерях тепла Земли. Экстраполируя градиент на большие глубины, можно в какой-то степени оценить температурное состояние земной коры. Величина, соответствующая углублению в метрах, при котором температура повышается на 1°С, называется геотермической ступенью.
В связи с изменением интенсивности солнечного излучения тепловой режим первых 1,5-40 м земной коры характеризуется суточными и годовыми колебаниями. Далее имеют место многолетние и вековые колебания температуры, которые с глубиной постепенно затухают. На любой глубине температура горных пород ( ) приближенно может быть определена по формуле
, (1)
где – средняя температура воздуха данной местности; – глубина, для которой определяется температура; – глубина слоя постоянных годовых температур; – геотермическая ступень.
Средняя величина геотермической ступени равна 33 м, и с углублением от зоны постоянной температуры на каждые 33 м температура повышается на 1 °С.
Геотермические условия чрезвычайно разнообразны. Это связано с геологическим строением того или иного района Земли. Известны случаи, когда увеличение температуры на 1 °С происходит при углублении на 2-3 м.
Эти аномалии обычно находятся в областях современного вулканизма. На глубине 400-600 м в некоторых районах, например Камчатки, температура доходит до 150-200 °С и более.
В настоящее время получены данные о довольно глубоком промерзании верхней зоны земной коры. Геотермические наблюдения в зоне вечной мерзлоты позволили установить, что мощность мерзлых горных пород достигает 1,5 тыс. м. Так, в районе реки Мархи (приток Вилюя) на глубине 1,8 тыс. м температура составляет всего лишь 3,6 °С. Здесь геотермическая ступень составляет 500 м на 1 °С. На отдельных платформенных частях территории (на Русской платформе) температура с глубиной примерно следующая: 500 м – не выше 20° С, 1 тыс. м – 25-35° С; 2 тыс. м – 40-60° С; 3-4 тыс. м – до 100° С и более.
Подземные термальные воды (гидротермы)
В земной коре существует подвижный и чрезвычайно теплоемкий энергоноситель – вода, играющая важную роль в тепловом балансе верхних геосфер. Вода насыщает все породы осадочного чехла. Она содержится в породах гранитной и осадочной оболочек, а вероятно, и в верхних частях мантии. Жидкая вода существует только до глубин 10-15 км, ниже при температуре около 700 °С вода находится исключительно в газообразном состоянии.
На глубине 50-60 км при давлениях около 3·104 атм исчезает граница фазовости, т.е. водяной газ приобретает такую же плотность, что и жидкая вода. В любой точке земной поверхности, на определенной глубине, зависящей от геотермических особенностей района, залегают пласты горных пород, содержащие термальные воды (гидротермы). В связи с этим в земной коре следует выделять еще одну зону, условно называемую «гидротермальной оболочкой». Она прослеживается повсеместно по всему земному шару только на разной глубине. В районах современного вулканизма гидротермальная оболочка иногда выходит на поверхность. Здесь можно обнаружить не только горячие источники, кипящие грифоны и гейзеры, но и парогазовые струи с температурой 180-200° С и выше.
Температура подземных вод колеблется в широких пределах, обусловливая их состояние, влияя на состав и свойства. В соответствии с температурой теплоносителя все геотермальные источники подразделяют на эпитермальные, мезотермальные и гипотермальные.
К эпитермальнымисточникам обычно относят источники горячей воды с температурой 50-90 °С, расположенные в верхних слоях осадочных пород, куда проникают почвенные воды.
К мезотермальнымисточникам относят источники с температурой воды 100-200 °С.
В гипотермальныхисточниках температура в верхних слоях превышает 200 °С и практически не зависит от почвенных вод.
Происхождение термальных вод может быть связано с деятельностью тепловых очагов, но чаще всего вода, тем или иным способом попадая в пласт породы, совершает долгий путь, пока не приходит в контакт с тепловым потоком или постепенно разогревается, отбирая тепло у пород.
Жидкая фаза воды и тепло могут происходить из одного источника лишь в том случае, если таковым является остывающий магматический расплав. Перегретая вода в виде паровых струй выделяется из расплава вместе с газами и легколетучими компонентами, устремляясь в верхние, более холодные горизонты. Уже при температурах 425-375 °С пар может конденсироваться в жидкую воду; в ней растворяется большинство летучих компонентов – так появляется гидротермальный раствор «ювенильного» (первозданного) типа. Под термином «ювенильные» геологи подразумевают воды, которые никогда прежде не участвовали в водообороте; такие гидротермы в прямом смысле слова являются первичными, новообразованными. Полагают, что подобным образом сформировалась вся поверхностная гидросфера морей и океанов в эпоху молодой магматической активности планеты, когда только-только зарождались твердые консолидированные «острова» материковых платформ.
Прямой противоположностью «ювенильных» вод являются воды инфильтрационногопроисхождения. Если «ювенильные» воды, отделяясь отмагматического расплава, поднимаются к поверхности, то преобладающеедвижение инфильтрационных вод – от поверхности вглубь. Источник водэтого типа представляет собой атмосферные осадки или вообще поверхностные водотоки. По поровому пространству пород или трещинным зонам этиводы проникают (инфильтруются) в более глубокие горизонты. По путидвижения они насыщаются различными солями, растворяют подземные газы,нагреваются, отбирая тепло у водопроводящих пород.
В зависимости от глубины проникновения инфильтрационных вод они становятся более или менее нагретыми. При средних геотермических условиях для того, чтобы инфильтрационные воды стали термальными (т.е. с температурой более 37 °С), необходимо их погружение на глубину 800-1000 м.
Инфильтрационные гидротермы способны изливаться на поверхность в виде горячих источников, если существует возможность разгрузки воды на поверхность по разломам, выклиниваниям слоев, что происходит в более низких относительно области питания участках. Причем, чтобы вода оставалась термальной, подъем ее к поверхности должен происходить очень быстро, например, по широким трещинам разломов. При медленном подъеме гидротермы остывают, отдавая аккумулированное тепло вмещающим породам. Однако, если пробурить скважину на глубину 3-4 тыс. м и обеспечить быстрый подъем воды, можно получить термальный раствор с температурой до 100 °С. Все это касается областей со средними геотермическими показателями и не относится к вулканическим районам или зонам недавнего горнообразования.
Вулканическийтип термальных вод следует выделить особо. Как уже говорилось, горячие источники вулканических районов нельзя целиком считать «ювенильными», т. е. магматическими. Опыт исследований показывает, что в подавляющем случае вода вулканических терм имеет поверхностное инфильтрационное происхождение. Помимо гейзеров вулканический тип гидротерм включает грязевые грифоны и котлы, паровые струи и газовые фумаролы.
Все перечисленные типы термальных вод имеют разнообразнейший химический и газовый состав. Их общая минерализация колеблется от ультрапресных категорий (менее 0,1 г/л) до категорий сверхкрепких рассолов (более 600 г/л). Гидротермы содержат в растворенном состоянии различные газы: активные (агрессивные), такие, как углекислота, сероводород, атомарный водород, и малоактивные – азот, метан, водород.
В геотермальной энергетике могут быть использованы практически все виды термальных вод: перегретые воды – при добыче электроэнергии, пресные термальные воды – в коммунальном теплообеспечении, солоноватые воды – в бальнеологических целях, рассолы – как промышленное сырье.