Строение и функционирование комплекса почвенных микроорганизмов
Цель практического занятия:изучить концепцию комплекса почвенных микроорганизмов и принципы: дублирования, обратимости и множественного лимитирования
Ключевые слова:микроорганизмы, концепция, принципы, дублирование, лимитирование, ненасыщенность
Вопросы:
1. Концепция комплекса почвенных микроорганизмов: концепция микробного пула, концепция пула метаболитов
2. Принцип дублирования
3. Принцип обратимости микробиологических процессов
4. Принцип множественного лимитирования
5. Концепция ненасыщенности комплекса почвенных микроорганизмов
6. Концепция почвы как множества сред обитания микроорганизмов
Экосистемы отличаются определенной прочностью, которая выражается в способности поддерживать гомеостаз. Почвенные микроорганизмы в естественных биогеоценозах поддерживают на постоянном, характерном для данного типа почвы уровне органическое вещество (гумус), различные индивидуальные органические вещества (ферменты, аминокислоты, органические кислоты, витамины, ауксины, токсины), содержание подвижного азота, фосфора, вероятно, скорость разрушения минералов и т.д. Хозяйственная деятельность человека добилась значительной интенсификации процессов, проводимых почвенными микроорганизмами.
Опыт сельского хозяйства показывает, что микробиологические процессы разложения органических веществ, о которых можно судить, например, по интенсивности дыхания почвы, резко интенсифицируются, убыстряется круговорот биогенных элементов, что до определенных пределов может рассматриваться как положительное явление. Интенсификация процессов, осуществляемых почвенными микроорганизмами (разложение органического вещества, денитрификация, вероятно, и азотфиксация), при создании соответствующих условий достигается довольно легко. Однако такого рода интенсификация в связи с хозяйственной деятельностью человека часто оказывается вредной. Происходят чрезмерно быстрое разрушение органического вещества в осваиваемых торфяниках, превращение внесенных азотных удобрений в нитраты с последующим их вымыванием в грунтовые воды и реки, развитие процесса денитрификации, приводящее к газообразным потерям азота, и т.д.
Таким образом, общий тезис, применяемый в почвенной микробиологии «чем больше, тем лучше» (в отношении количества микроорганизмов, ферментативной активности почв, скорости разложения клетчатки на зарытых в почву кусках ткани, накопления аминокислот, дыхания почвы и др.) кажется все более сомнительным. Если бы зоолог или ботаник начал отстаивать подобный тезис, то абсурдность его стала бы сразу очевидной. Например, чрезмерное развитие травоядных животных не ведет ни к чему хорошему для экосистемы. Чрезмерное развитие хищников также вызывает повреждение экосистемы, а не ее процветание. Однако в области почвенной микробиологии предположение о положительном влиянии избытка микроорганизмов оказывается часто справедливым. Причина заключается в специфике функционирования комплекса почвенных микроорганизмов. Микробиологи, как правило, определяют не реальное воздействие экологического фактора на экосистему, а потенциальные возможности микроорганизмов и потенциальную биологическую активность почв (количество зачатков микроорганизмов, потенциальная ферментативная активность почв). Общий запас и большие потенциальные возможности часто говорят о высокой буферности системы. Отличие микроорганизмов от высших организмов состоит в том, что их количество может быть не пропорционально их реальному воздействию на экосистему и не пропорционально интенсивности проводимых ими процессов. Количество животных и растений, а также их биомасса в гораздо большей степени пропорциональны их вкладу в круговорот веществ и поток энергии в экосистеме.
Большие потенциальные возможности говорят, как правило, о большей способности системы сохранять равновесие при изменяющихся внешних воздействиях. В этом отношении экосистемы с высокой потенциальной биологической активностью могут быть устойчивее. Однако гипертрофированная полевая (реальная) биологическая активность скорее ведет к разрушению экосистемы, чем к ее поддержанию. Для естественных экосистем должен быть характерен свой оптимум реальной микробиологической активности, и выход за его пределы, как в сторону понижения, так и в сторону повышения вреден. Определение реальной биологической активности, характерной для данной почвы, крайне необходимо, так как оно позволило бы устанавливать повреждения в функционировании комплекса почвенных микроорганизмов. Оптимумы полевой активности в естественных условиях меняются по сезонам, поэтому определение среднего оптимума реальной активности затруднительно. Среднюю потенциальную биологическую активность почв по тому или другому показателю определить легче, так как эта величина более стабильная.
В общем случае колебания численности, биомассы микробных клеток, биологической активности, более или менее плавные отклонения от определенного минимума, который можно рассматривать как пул, характерный для данной почвы (например, количество микроорганизмов, которое почва может поддерживать в наиболее неблагоприятные для их развития периоды). Величина пула не зависит от случайных колебаний температуры, влажности, поступления растительных остатков, а обусловлена типом почвы с присущими ему физическими и химическими свойствами, формирующимися в процессе почвообразования, а также факторами, которые приводят к изменению свойств почвы за относительно небольшие промежутки времени и обусловлены, как правило, антропогенными воздействиями (загрязнения, агротехнические и агрохимические мероприятия). Верхние пределы численности микроорганизмов в значительной мере обусловлены непрогнозируемыми экологическими факторами — количеством осадков, изменением температуры почвы, поступлением органического вещества. Они могут совпадать для разных типов почв. Таким образом, при определении среднего значения для данного фактора в заданной почве они в большей мере отражают экологические условия периода наблюдений, чем свойства, присущие данному почвенному типу. Для определения минимального пула надо экспериментально установить наименьшее значение показателей.
Особо рассматривают агроценозы, в которых интенсифицируются процессы для получения большого количества чистой продукции. В этом случае повышение природной биологической активности — явление необходимое и положительное, но в определенных пределах. Повышение скорости разложения растительных остатков и органических удобрений — явление положительное, а повышение интенсивности нитрификации и денитрификации при внесении азотных удобрений — вредное. Стратегия развития экосистем, идущих к климаксным сообществам, и стратегия сельского хозяйства различны. Если развитие экосистемы ведет к снижению чистой продукции, то сельское хозяйство стремится к получению максимального урожая. В связи с этим перестройка интенсивности микробиологических процессов, протекающих в почвах, занятых сельскохозяйственными угодьями, — явление вполне закономерное.
По потенциальной биологической активности любой комплекс почвенных микроорганизмов, находящихся в той или иной почве, надо рассматривать как климаксный (самый высокий в биосфере генофонд, потенциально узкая специализация по экологическим нишам, высокая потенциальная способность к поддержанию гомеостаза). Однако реализация этих возможностей будет идти по- разному в зависимости от условий, и микробный комплекс может функционировать и как молодая и как старая экосистема не только в зависимости от стадии сукцессии высших растений, но и от сезона и конкретных условий почвенной микрозоны.
1 Концепция комплекса почвенных микроорганизмов
Представление о комплексе почвенных микроорганизмов вводится вместо понятия «микробоценоз», которое не вполне удачно, так как в почве часть микроорганизмов связана с растениями, а часть— с животными, и нет функционально единой изолированной системы микроорганизмов (микробоценоза). Рассматриваемая концепция отрицает идею о глобальной строгой и жесткой организованности почвенных микроорганизмов в единую систему. Однако на практике часто как равнозначные употребляются термины микробное сообщество, микробоценоз, микробиота, почвенные микроорганизмы.
Концепция микробного пула
Гомеостаз в почве поддерживается с помощью механизмов, основанных в первую очередь на микробном пуле. В почвах всегда имеется избыточный пул (запас) микробов, не обеспеченных органическим веществом и другими элементами питания. Благодаря наличию этих лимитирующих факторов непрерывное развитие и размножение микроорганизмов не осуществляются. Первым лимитирующим фактором в развитии почвенных гетеротрофных микроорганизмов является недостаток органического вещества и отчасти других питательных веществ, особенно фосфора. Температура и влажность в качестве лимитирующих факторов выступают на протяжении определенных отрезков времени (зима, летняя засуха), но не влияют на валовую минерализацию органического вещества в климаксных экосистемах. В них, как известно, синтез органического вещества равен его разложению. Запас же органического вещества (живого и мертвого) остается постоянным.
При построении комплекса почвенных микроорганизмов выполняется общий закон развития экосистем — сукцессия движется по пути поддержания единицей энергии все большей биомассы организмов. Это правило особенно справедливо для почвенных микроорганизмов. Оно четко проявляется в случае, если потенциальный пул микроорганизмов рассматривается как климаксная система. На протяжении всего развития почвенной микробиологии представления о численности микроорганизмов в почве, т.е. о ее микробном пуле, сильно изменилось, причем определяемая численность все время увеличивалась. Сначала применяли метод посева на питательные среды и, таким образом, учитывали сравнительно немного микроорганизмов. Количество бактерий определялось миллионами клеток на 1 г почвы. Применение прямого микроскопического метода Виноградского позволило учесть в почве в тысячи раз больше бактерий: от сотен миллионов до 1-2 млрд. на 1 г почвы. Использование люминесцентной микроскопии в отраженном свете еще увеличило учитываемое количество микроорганизмов. По методу Виноградского часть клеток нельзя было учесть из-за адсорбции их на почвенных частицах и в агрегатах. Электронная микроскопия позволила выявить в почве ультрамикроскопические формы, и, таким образом, определяемая численность почвенных микроорганизмов еще возросла. Количество бактерий в почвах колеблется от 1 до 10 млрд, иногда даже нескольких десятков миллиардов клеток на 1 г почвы, суммарная длина грибных гиф (окрашивание калькофлуором, люминесцентная микроскопия) составляет сотни метров и километров на 1 г почвы. Кроме того, в почве находится большое количество гиф актиномицетов (сотни метров на 1 г, окраска акридином оранжевым), а также более крупные микроорганизмы: водоросли, простейшие животные, другие беспозвоночные и др. Вес живой биомассы на I га для бактерий может изменяться от сотен до нескольких тысяч килограммов, а для фибов — от сотен килофаммов до десятков тонн на 1 га.
Масса сухого микробного вещества, единовременно содержащегося в почве, составляет для богатых почв 5-10 т/га. Чистая первичная продуктивность растительных сообществ известна и составляет для продуктивных сообществ 20 т/га. По последним определениям, к чистой первичной продукции растений, учтенной старыми методами, нужно прибавить 20-50% (корневые выделения и корневой отпад, которые почти полностью используются микроорганизмами ризопланы и ризосферы). Большинство микроорганизмов в почве представлено гетеротрофами и большая часть энергии тратится на поддержание биомассы микроорганизмов. Комплекс почвенных микроорганизмов выполняет свои экологические функции и проводит процессы превращения не только при росте и размножении микроорганизмов, но подобно другим организмам и в процессе поддержания клеток, на что тратится часть органического вещества.
Таким образом, расчеты показывают, что почва в целом на протяжении большей части времени представляет собой среду, слабообеспеченную доступными органическими веществами в расчете на имеющуюся микробную биомассу.
Почвы в экологическом отношении представляют тип местообитания с рассеянным доступным органическим веществом, с большим и разнообразным пулом только в небольшой части активных микроорганизмов. При этом проявляются специфические приспособления для переживания длительных периодов, неблагоприятных для развития (способность усваивать вещества из рассеянного состояния, адсорбироваться на частицах, где происходит накопление питания, переходить в состояние глубокого анабиоза). В последнее время установлено, что большинство ил и даже все прокариоты способны переходить в состояние глубокого анабиоза, подобного анабиозу эндоспор бактерий.
С экологической точки зрения необходимо установить функции микробного пула, этого важного приспособления для поддержания гомеостатического состояния в почве. Известно, что каждый тип почвы имеет характерное для него содержание гумуса, ряда нерастворимых и растворимых органических веществ (полисахаридов, липидов, белков, сахаров, органических кислот и спиртов, аминокислот, витаминов и ферментов), ряда неорганических веществ (нитратов, аммония, подвижного фосфора, закисного и окисного железа), определенные окислительно-восстановительные условия и pH со специфическим распределением их по микрозонам. В поддержании отмеченных факторов большое, а часто и решающее значение имеет жизнедеятельность микроорганизмов. При возникновении сдвигов в системе, например поступлении свежего органического вещества в виде растительных остатков или внесении азотных удобрений, в процессы их трансформации включаются микроорганизмы, которые должны привести систему в состояние равновесия. Большой пул микроорганизмов в почве необходим по следующим причинам. Горизонтальное и вертикальное перемещение микроорганизмов в почве затруднено из-за адгезии микроорганизмов почвенными частицами и сложности их передвижения по мелкопористой системе, каковой является почва. Между тем органическое, как и другие вещества, поступает в определенные микро- и мезозоны почвы случайно. Поэтому, чтобы обеспечить переработку веществ, в каждой мезо- или даже микрозоне должен присутствовать полный набор микроорганизмов, необходимых для переработки всех поступающих в почву веществ. В разное время в данном месте могут возникнуть разные зоны: аэробная или анаэробная, с низкими или высокими температурами, с резко изменяющимися значениями pH и т.д. Каждый небольшой участок почвы должен содержать микроорганизмы, не только разлагающие органические вещества (целлюлозу, лигнин, хитин и др.), но и осуществляющие другие необходимые процессы: азотфиксацию, аммонификацию, гидролиз органофосфатов, трансформацию органических и минеральных соединений, минералов и т.д.
Небольшие по расстоянию миграции микроорганизмов в почве возможны, и благодаря наличию у микробов хемотаксисов они осуществляются целенаправленно.
Микроорганизмы обладают способностью при благоприятных условиях чрезвычайно быстро размножаться. Пул дает микроорганизмам возможность быстрее реагировать на изменившиеся условия и таким образом способствовать более тонкому регулированию гомеостаза и быстрейшему его достижению. Размножение начинается не от единичных клеток, а от тысяч и сотен тысяч, что способствует убыстрению процесса. Первоначальное содержание микроорганизмов важно для быстрого достижения достаточного уровня клеток, необходимого для ликвидации происшедшего в системе сдвига.
В природных условиях пул микроорганизмов особенно увеличивается в тех экосистемах, в которых условия для протекания микробиологических процессов оказываются неблагоприятными, например в высокогорных почвах и почвах тундры, где лето очень короткое и гидротермические условия, благоприятные для развития микроорганизмов, существуют в течение короткого периода времени. Микробный пул велик и в черноземах, где развитию микроорганизмов препятствуют то недостаток влаги, то морозы.
Пул почвенных микроорганизмов отличается не только большой численностью, но и разнообразием. По микробному генофонду почва — самый богатый субстрат на Земле. Недаром при поисках микроорганизмов-продуцентов определенных ценных веществ (антибиотиков, витаминов, ферментов, аминокислот) в большинстве случаев обращаются к почве как наиболее надежному источнику разнообразных микробов.
Другая важная функция пула состоит в том, что он обеспечивает выживание каждого вида микроорганизмов. Почва представляется средой весьма гетерогенной, со множеством различных микрозон. Только в части этих микрозон в определенном интервале времени создаются условия, благоприятные для размножения и выживания определенного микроорганизма. Для выживания микробов в почве в начале неблагоприятного периода общее число клеток должно быть большим, тогда они будут находиться во многих микрозонах и хотя бы часть их выживет в благоприятных микрозонах.
С точки зрения функции, в почве следует различать два пула микроорганизмов: на более высоком уровне — пул, имеющий существенное значение для микробиологических процессов, протекающих в почве (в этом случае количество клеток бактерий должно быть больше 1 млн на 1 г почвы); и пул, обеспечивающий главным образом выживание разных видов микроорганизмов в почве. Во втором пуле численность клеток гораздо меньше, но он очень разнообразен в видовом отношении. Этот пул не имеет существенного значения в метаболических процессах на данной стадии сукцессии, но может оказаться необходимым для обеспечения процессов на других стадиях сукцессии или при изменении экологических условий.
Следует отметить, что сама почва как среда обитания построена таким образом, что она чрезвычайно благоприятна для выживания пула микроорганизмов (микрозональность).
Концепция пула метаболитов
В почве все время поддерживается пул легкодоступных органических веществ. Только часть общего количества зачатков микроорганизмов находится в состоянии глубокого покоя (эндоспоры бактерий, анабиотические формы бактерий (некультивируемые формы), споры актиномицетов и грибов). Почва является идеальной средой для поддержания микроорганизмов. В этом важную роль играет пул внеклеточных метаболитов, который подобно пулу внутриклеточных метаболитов, обеспечивающих функционирование обмена веществ, способствует выживанию микробных клеток в неблагоприятных условиях. В почве все время находится некоторое количество сахаров, органических кислот и спиртов, аминокислот, пуриновых и пиримидиновых оснований и др. Этот пул не дает погибнуть микробам в периоды, когда в данную почву или в данную микрозону не поступают свежие органические вещества. В почве имеется механизм для поддержания пула метаболитов на определенном уровне. Он основывается на запасе внеклеточных иммобилизованных гидролитических ферментов, благодаря работе которых пул простых органических веществ пополняется в результате гидролиза гумуса и других органических полимеров, имеющихся в почве. Пул гидролитических ферментов обеспечивает пул простых органических веществ, а последний дает возможность существовать в почве колоссальному пулу микроорганизмов. При оптимальных для протекания ферментативного процесса условиях он может переработать за сутки или несколько суток такое количество веществ, которое поступает в почву в естественных условиях за год. Об этом свидетельствуют результаты опытов по определению ферментативной активности почв с помощью обычно применяемых методов и подсчеты величин возможного поступления тех или иных веществ в почву за год, например фосфорорганических соединений, белков, липидов и др. В почве очень много ферментов, особенно гидролитических, и, казалось бы, в почвах не должен накапливаться субстрат, т.е. биополимеры и другие соединения, которые могут подвергаться воздействию гидролаз, но это не так. Дело в том, что на протяжении длительных отрезков времени существуют крайне неблагоприятные условия для проявления ферментативной активности (низкие температуры, низкий потенциал влаги). Однако самое главное — это разобщенность в почве фермента и субстрата. Фермент адсорбирован (иммобилизован) в одних микрозонах, а субстрат— в других. Иногда адсорбированный субстрат вообще недоступен для фермента, так как закрыт другими органическими полимерами или минеральным гелем — Si02, А1203, Fe(OH)3.
2 Принцип дублирования
Каждый существенный физиолого-биохимический процесс в почве строится на функционировании нескольких дублирующих друг друга микроорганизмах. Известно, что такой важный процесс, как разложение целлюлозы, осуществляется разными в систематическом отношении микроорганизмами: грибами, миксо- бактериями, актиномицетами, аэробными и анаэробными бактериями. Причем представители многих перечисленных групп находятся в каждой почве. Если раньше предполагалось, что азот- фиксацию осуществляют только клубеньковые бактерии, азотобактер и клостридиум, то в настоящее время с помощью ацетиленового метода показано, что этот процесс проводится многими и весьма различными, правда, только прокариотными, микроорганизмами. Этот процесс вызывается аэробными и анаэробными бактериями, автотрофами и гетеротрофами, синезелеными и другими фотосинтезирующими бактериями, архебактериями, термофилами и др. Не все прокариоты исследованы на эту способность и не у всех удалось ее обнаружить, но, вероятнее всего, это общая способность всех прокариот. Однако интенсивность процесса и условия его проведения у разных прокариот различные.
Долгое время процесс нитрификации приписывался исключительно узкой группе хемолитоавтотрофных нитрифицирующих бактерий. В настоящее время хорошо изучена так называемая гетеротрофная нитрификация, которая в широких масштабах вызывается многими грибами и гетеротрофными бактериями. Гидролиз органофосфатов и перевод труднорастворимых фосфатов в доступную для организмов форму осуществляются многими группами микроорганизмов. Разнообразнейшие микроорганизмы участвуют в окислении железа и марганца и в их восстановлении. Широкий набор организмов принимает участие в разрушении силикатов и алюмосиликатов, в синтезе новых минералов. Прежние представления об узости функций определенных микроорганизмов в почвенной микробиологии явно преувеличены. Для удобства изучения микроорганизмы были разбиты на физиологические группы, например азотфиксаторы, денитрификаторы, нитрификаторы, аммонификаторы, целлюло- золитические, сахаролитические, пектинолитические, протеоли- тические и др. Исследователь, изучив какой-либо процесс, осуществляемый микроорганизмом и часто являющийся для его жизнедеятельности только одним из многих возможных процессов, называл даже микроорганизм по тому процессу, который был обнаружен. Например, азотфиксаторы, железобактерии, водородные бактерии и др.
Все это имеет закономерные исторические причины, но в дальнейшем вольно или невольно происходила абсолютизация представлений и складывалось мнение, что Azotobacter— основной азот- фиксатор в почвах, Ps. denitrificans — основной денитрификатор и Metallogenium — основной рудообразователь. Однако по мере изучения новых микроорганизмов стало ясно, что каждая из перечисленных функций широко распространена среди почвенных микроорганизмов. В последнее время выяснилось, что нет отдельных физиологических групп бактерий азотфиксаторов и денитри- фикаторов. Один и тот же микроорганизм проводит тот или иной процесс в зависимости от конкретных условий окружающей среды. При наличии органического вещества и недостатке связанного азота в среде происходит азотфиксация. Если же имеется органическое вещество при избытке нитратов и недостатке кислорода — идет денитрификация. Отметим, что чрезвычайно важно было бы установить, насколько отличаются окислительно-восстановительные условия (концентрация кислорода) для протекания этих двух процессов. Если тот же микроорганизм азотфиксатор-денитрифи- катор в процессе своего роста использует белки или аминокисло ты, то он становится аммонификатором. Обычно он может проводить и гетеротрофную нитрификацию. Таким образом, генетические возможности микробов оказываются весьма обширными и, скорее, нужно говорить о физиологических процессах, проводимых микроорганизмами, а не о физиологических группах микробов. Многие микробиологи-экологи считают, что имеются специфические группы микроорганизмов, использующие определенные органические вещества. Особенно это касается грибов. Существует мнение о наличии специфических групп сахаролитических, пек- тинолитических, целлюлозолитических, хитинолитических, лиг- нинолитических грибов. Однако такое деление во многом условно. В отношении сахаролитических грибов нужно заметить, что вообще нет микроорганизмов, которые не обладали бы гидрола- зами. Поэтому наряду с использованием сахаров и других мономерных органических соединений сахаролитические грибы могут использовать и некоторые полимеры, особенно крахмал, белки и др. Кроме того, гидролазы всегда содержатся в почве, и микроорганизмы могут использовать для своей жизнедеятельности «чужие» гидролазы. Даже микроорганизм, который обладает специфическими гидролазами типа целлюлаз, вполне может использовать ряд мономеров.
Конечно, из сказанного нельзя делать вывод об отсутствии физиологических различий между микроорганизмами, однако, на данном этапе развития экологии микроорганизмов особенно нужно подчеркнуть полифункциональность каждого вида микроорганизма. Принцип дублирования в проведении определенных физиолого-биохимических процессов широко распространен. Чем больше дублеров, тем быстрее идет процесс (разложение сахаров, спиртов, органических кислот), чем меньше дублеров, тем медленнее протекает процесс (разложение фенола, анилина, нафталина, ряда пестицидов и др.).
Принцип дублирования широко действует в почвах и, очевидно, дает возможность более точно и тонко поддерживать гомеостаз даже в изменяющихся физико-химических условиях.
Принцип дублирования касается того или иного важного процесса (азотфиксации, нитрификации, разложения целлюлозы, фосфорорганических соединений), а также синтеза веществ (различных групп гидролитических ферментов, меланинов, принимающих важное участие в гумусообразовании, витаминов и др.). Аналогичные процессы проводятся в аэробных и анаэробных условиях, при низких и высоких температурах разными систематическими группами микроорганизмов.
Принцип дублирования может быть в некоторой степени распространен и среди близких таксономических групп микроорганизмов. Например, можно утверждать, что в каждой почве встречаются и одновременно функционируют виды микроорга- низмов-дублеров. Таким образом, для почвы, взятой в-целом, как бы не соблюдается правило Гаузе о том, что два вида не могут занимать одну и ту же нишу в экосистеме. Правило Гаузе в совокупной массе почвы и не должно действовать, так как почва представляет собой множество экологических ниш, разделенных в пространстве и времени. В разных частях почвы как чрезвычайно структурированного биотопа микробные ассоциации функционируют относительно изолированно. Почва для микробов— это не единая среда обитания, а множество различных микросред.
Принцип дублирования тесно связан с принципом пула микроорганизмов.
3 Принцип обратимости микробиологических процессов
Любой процесс превращения вещества микроорганизмы ведут в двух взаимно противоположных направлениях. Обычно микроорганизмы разлагают органические вещества с выделением С02. Однако в процессе автотрофной и гетеротрофной фиксаций они связывают С02 в органические вещества. Микроорганизмы разрушают белки, целлюлозу, хитин, но они и образуют все эти соединения. Микробы совершают противоположные процессы — азотфиксацию и денитрификацию. Они осуществляют восстановление и окисление соединений азота, а также окисление и восстановление всех элементов с переменной валентностью (железа, серы, марганца, сурьмы). Иногда противоположные процессы совершает один и тот же микроорганизм, иногда — разные. Следует особо подчеркнуть, что в этом удивительном свойстве микроорганизмов заложена основа их тонкой способности к поддержанию гомеостаза в экосистемах, и в частности в почве. Равновесие устанавливается не по принципу простого химического равновесия, а более сложным образом.
4 Принцип множественного лимитирования
В почве, взятой в совокупной массе, благодаря ее микрозо- нальному строению наблюдается множественное лимитирование, т.е. лимитирование по нескольким или множеству факторов. В почве почти всегда имеются микрозоны с недостатком органического вещества, азота, фосфора, калия, кальция, микроэлементов и др. Поэтому наблюдается такое явление, при котором внесение в почву любого из этих органических веществ и насыщение им всех микрозон приводят к развитию в ней дополнительного количества микроорганизмов. Возможно наличие двойного или даже множественного лимитирования и в некотором числе отдельных микрозон. Последний вопрос в настоящее время исследуется в экспериментах по проточному культивированию микроорганизмов, но для почвы он пока не ясен.
5 Концепция ненасыщенности комплекса почвенных микроорганизмов
Правило Бейеринка в отношении микроорганизмов гласит: «Все есть везде» и «Среда отбирает». Очевидно, это правило нельзя понимать в буквальном смысле. Работы некоторых авторов и особенно российских ученых показали, что для разных почв характерны разные ассоциации (комплексы доминирующих почвенных микроорганизмов). Во многих почвах определенные микроорганизмы не обнаруживаются. Это относится к азотобактеру, клубеньковым бактериям, актиномицетам и грибам. Существующие микробиологические методы дают возможность обнаруживать тот или иной микроорганизм в почве только при довольно высоком уровне его содержания. Иногда это миллионы, в лучшем случае тысячи клеток на 1 г почвы. Кроме того, во многих случаях клетки могут не обнаруживаться даже при их большом содержании, что обусловлено следующими причинами: отсутствием достаточно элективной среды, незнанием оптимальных условий для выделения, нахождением клеток в состоянии стресса, адгезией клеток почвенными частицами, существованием данного вида в почве в измененной форме, наличием у клеток глубокого покоя и ката- болитной репрессией, из которых их не удается вывести, помехами при выделении со стороны сопутствующих микроорганизмов, мешающим действием твердых почвенных частиц при посеве из малых разведений и т.д. Таким образом, пока нельзя достоверно утверждать, что определенный микроорганизм в данной почве абсолютно отсутствует. Тем более, что для почвы характерна чрезвычайная мезо- и микрозональность, и микроорганизм может не обнаруживаться в одних образцах, отобранных для анализа, но он может присутствовать в значительных количествах в других образцах или в другие сроки. К сказанному следует прибавить трудности, возникающие из-за резких сезонных, а также сукцес- сионных колебаний численности видов. Неопределенность самого понятия вида у бактерий также затрудняет получение точного ответа на вопрос о наличии или отсутствии микроорганизма в данной почве. Таким образом, проверка правила Бейеринка в абсолютном его понимании в настоящее время представляется весьма затруднительной или даже невозможной. Положение о том, что многие виды, если и присутствуют, то в очень малом числе и не встречаются в количествах, превышающих сотни клеток на 1 г, не вызывает сомнения. Если определенные микроорганизмы и отсутствуют в почве, то они должны время от времени привноситься в нее благодаря широко распространенной воздушной дисперсии почвенных микроорганизмов. Достаточно вспомнить пыльные бури, во время которых переносятся тысячи тонн почвы, чтобы представить масштабы перемещения почвенных микроорганизмов. Насколько установлено, подавляющее большинство их при перенесении по воздуху с почвенными частицами, а часто и внутри почвенных агрегатов сохраняет свою жизнеспособность. Таким образом, каждая почва на Земле на протяжении определенного отрезка времени, длительность которого, к сожалению, неизвестна (годы, десятки, сотни, тысячи лет), получает все или почти все микроорганизмы.
Конкретные условия среды определяют, будут ли эти привнесенные микроорганизмы входить в пул доминирующих, или в пул переживающих микроорганизмов, или вообще будут вымирать.
Очень длительное время господствовало мнение, что посторонний аллохтонный микроорганизм, попадающий в почву, как правило, быстро погибает. Однако исследования, проведенные в последнее время, показали, что внесенный микроорганизм, которого не было в почве (или он присутствовал в неопределяемо малом количестве), после внесения обычно стабилизируется на значимом уровне и долго сохраняется в почве. При внесении в почву различных видов микроорганизмов случаи гибели вида отмечаются довольно редко, причем в первую очередь проявляется неблагоприятное действие сильной кислотности, щелочности или засоленности. В то же время внесенный микроорганизм никогда не занимает господствующего положения среди других микроорганизмов.
Это свойство описывается как «ненасыщенность комплекса почвенных микроорганизмов». В этот комплекс на довольно высокой популяционной плотности могут входить новые члены, причем они находятся не в состоянии покоя, а в динамическом равновесии, т.е. некоторое количество клеток постоянно отмирает и такое же количество появляется вновь. Количественно определить размеры отмирания и образования новых клеток в популяции весьма сложно, но решение этой проблемы позволило бы сделать популяционные подходы еще более ценными. Пока о размножении клеток можно судить с использованием относительных методов, определяя количество живых и мертвых клеток по дифференцированному окрашиванию (диацетат флуоресцеи- на, акридин оранжевый и др.). В последнее время разработан метод по разделению живых и мертвых клеток после суточной инкубации почвенной суспензии. Большинство живых клеток делится и образует микроколонии, а мертвые клетки остаются одиночными. Другим методом являются периодические посевы из почвы на агаризованные питательные среды на протяжении нескольких дней или недель.
Способность популяции длительно сохраняться можно использовать для практических целей. Микроорганизмы могут сохраниться, а затем проявить свою активность в специфической экологической нише, например, внутри растения (клубеньковые бактерии, микоризные грибы, фитопатогены и др.). Длительное сохранение ставит под сомнение целесообразность внесения в почву каких-либо «полезных» микроорганизмов, которые, как предполагается, должны проявлять активную деятельность в почве (свободноживущие азотфиксаторы, микроорганизмы, разрушающие нефтяные загрязнения). Если бы определенный микроорганизм мог достигнуть в почве доминирующего положения, он достиг бы его и без внесения. Особый случай представляет внесение микроорганизмов одновременно или после изменения общей экологической обстановки. После изменения параметров экосистемы внесение микроорганизма может ускорить его появление, однако, как правило, комплекс почвенных микроорганизмов многообразен, и в нем находятся микроорганизмы, которые с наибольшим эффектом занимают новые экологические ниши. В то же время внесение одного какого-либо «полезного» микроорганизма ничего не может дать, так как его ниша заведомо будет очень ограничена, и он войдет как малая доля в число сотен видов. Если даже предположить, что он займет господствующее положение, что, видимо, происходит очень редко, если вообще происходит, то это означает гибель экосистемы, т.е. явление, которое в гидробиологии называют «цветением». При господстве одного микроорганизма комплекс почвенных микроорганизмов, конечно, не может выполнять все многообразие функций, которые он берет на себя в естественных биогеоценозах. Внесение микроорганизмов на корни растений через семена будет рассмотрено ниже.
6 Концепция почвы как множества сред обитания микроорганизмов
С микробиологических позиций почва представляет собой крайне гетерогенную среду и не может рассматриваться как единая однородная среда обитания. Благодаря своей структурированности и микрозональности она должна рассматриваться, как набор различных микро- и мезосред, в каждой из которых создаются различные и часто прямо противоположные условия для развития отдельных групп микроорганизмов. Множество таких микросред может находиться в каждом грамме почвы. Микро- и мезозоны разделены в пространстве и времени. Микроорганизмы — это как раз такие организмы, которые адаптированы к развитию в микрозонах. Микроскопические размеры дают им возможность осваивать микросреду. Способность быстро размножаться и быстро переходить к покою или крайне замедленному метаболизму дает им возможность за короткий срок освоить микрозону и выжить при исчерпании запасов питания. Микрозоны могут быть очень небольшими и занимать всего несколько десятков или сотен кубических микрометров. При этом в микрозоне часто развивается одна микроколония, состоящая из нескольких десятков клеток одного вида. Иногда такие зоны имеют значительные размеры, например кусок разлагающихся растительных остатков. Они могут иметь большую протяженность при небольшой толщине, например, поверхность однородного участка корня (ризоплана).
Микрозональность основывается на локальном поступлении органических остатков и корневых выделений, а также на микрозональности распределения физико-химических условий (окислительно-восстановительного потенциала, pH, концентрации элементов питания и т.д.), минералогических факторов.
Несмотря на огромное количество микроорганизмов, содержащихся в почве (миллиарды на 1 г), оказывается, что клетки, как правило, собраны в микроколонии, разделенные пустыми пространствами, которые по площади в сотни и тысячи раз превосходят пространства, занятые микроорганизмами. Таким образом, микроколонии, состоящие из клеток одного или нескольких видов, могут развиваться сравнительно изолированно. Отсюда следует важный вывод о том, что в почве часто развиваются чистые микрокультуры микроорганизмов. Это положение было подтверждено экспериментально при изучении разных почв с помощью люминесцентной микроскопии. Пространства, разделяющие микроколонии, настолько велики по сравнению с размерами самих колоний, что трудно ожидать их тесного взаимовлияния. Следовательно, изучение чистых культур имеет более прямое отношение к почвенной микробиологии, чем считалось ранее. Основной вопрос, который в настоящее время нуждается в разрешении: насколько развитие в микрокультуре (микроколония) соответствует развитию в макрокультуре на чашках Петри (макроколония). Если такое соответствие можно признать достаточно полным, то данные, полученные в лабораторных условиях на чистых культурах, можно переносить на почвенные условия. Если развитие в тонких пленках воды, в капиллярах, а также просто в микрокультурах отличается (например, есть сведения, что микрокультуры клостридиума не образуют ботулина), то необходимо разрабатывать методы для изучения микрокультур. Метод чистых культур дает возможность изучать только генетические возможности культуры, а конкретное проявление будет зависеть от экологических условий.
В связи с концепцией микрозональности становятся понятными многие аспекты строения и функционирования комплекса почвенных микроорганизмов. Один из важных вопросов состоит в связи микрозональности с широким географическим распространением каждого вида микроорганизма. Дисперсия микроорганизмов, особенно воздушная, обеспечивает попадание всех почвенных микроорганизмов во все почвы. Если учесть, что среда обитания микроорганизмов является микросредой, которая может быть прерывистой во времени, то понятно, что все или почти все почвенные микроорганизмы могут выживать в некоторых микрозонах любых почв («все есть всюду» — правило Бейе- ринка). Однако в глобальных процессах круговорота веществ существенное экологическое значение будут иметь не все почвенные микроорганизмы, а только те, которые многочисленны и проявляют активную жизнедеятельность (пул высокого уровня). При проведении экологических исследований в большинстве случаев нет необходимости устанавливать все существующее в почве разнообразие микроорганизмов, а достаточно ограничиться установлением доминирующих в важных экологических процессах форм. Таким образом, критерии доминирования приобретают первостепенное значение для почвенной микробиологии, причем имеется в виду не только и не столько численное доминирование, а доминирование в проведении процессов. В одних случаях это могут быть такие глобальные процессы, как разложение целлюлозы или азотфиксация, а в других — синтез определенного витамина или определенной аминокислоты. К сожалению, в настоящее время в большинстве случаев почвоведы-микробиологи могут учитывать только численность определенных видов или даже родов микроорганизмов в почве, да и то с большим трудом и большими погрешностями. Интенсивность процессов, вызываемых определенным видом, почти не поддается определению. Комбинация методов иммунолюминесценции и авторадиографии позволяет не только видеть клетки определенного штамма микроорганизма в нестерильной почве, но и оценить активность каждой обнаруженной при микроскопии клетки. Но такие методы сложны и трудоемки. В связи с этим часто приходится довольствоваться условными критериями численности. Для бактерий может бьггь принят условный критерий, который гласит, что существенное экологическое значение бактерии имеют в том случае, если число их клеток не менее 1 млн на 1 мл или 1 г субстрата.
Поиски более редких бактерий могут иметь значение для индикации почв и других целей, но мало дают для оценки процессов, происходящих на данном этапе развития экосистемы. Для грибов, дрожжей, водорослей и других необходимо разрабатывать свои критерии экологической значимости, учитывая количество микроорганизмов, их размеры и интенсивность метаболизма. Поскольку эти организмы по массе приблизительно в 100 раз крупнее, чем бактерии, то для них может быть принят критерий 10 тыс. на 1г.
Физиологически активные вещества в почве (антибиотики, токсины, витамины, аминокислоты, стимуляторы и ингибиторы роста растений) важны для развития микроорганизмов в микрозонах. В то же время их глобальная регулирующая роль в масштабах всей почвы, хотя и признавалась некоторыми авторами, нуждается в дальнейшем экспериментальном подтверждении или опровержении. Первое место в качестве таких регуляторов, очевидно, могут занимать газообразные вещества, так как они наиболее быстро диффундируют и могут передавать информацию, являясь «средовыми гормонами». Действие физиологически активных веществ, в том числе газов или летучих органических веществ, в качестве «средовых гормонов» легко обнаружить в искусственных условиях, когда в почву вносятся большие количества органического вещества, и она перестает функционировать как система микросред и действует как единая система, т.е. переходит в другой тип микробных экосистем. Такое состояние возможно для больших частей естественной почвы на небольших отрезках времени, но оно не характерно для всей массы почвы. В почве имеются определенные зоны, функционирующие по другим законам. Прежде всего, это зона ризопланы и в какой-то мере ризосферы, пищеварительный тракт беспозвоночных животных, а также подстилка в лесу, степной войлок, разлагающийся торф и др. В этих случаях можно ожидать и искать большую организованность процессов, чем в других частях почвы.
Важным открытием, которое должно использоваться в экологии почвенных микроорганизмов, является кометаболизм. Установлено, что микроорганизмы могут разрушать некоторые труднодоступные вещества, в том числе и неприродные органические вещества. Принципы строения и функционирования комплекса почвенных микроорганизмов должны широко использоваться при разработке критериев целостности и повреждения этого комплекса в связи с применением удобрений, пестицидов, загрязнением почвы, а также при решении вопросов о целесообразности внесения в почву тех или иных «полезных» микроорганизмов или регулирования комплекса почвенных микроорганизмов путем изменения среды обитания.
Слайды, презентации
Контрольные вопросы:
1. Концепция комплекса почвенных микроорганизмов?
2. Концепция микробного пула?
3. Концепция пула метаболитов?
4. Принцип дублирования?
5. Принцип обратимости микробиологических процессов?
6. Принцип множественного лимитирования?
7. Концепция ненасыщенности комплекса почвенных микроорганизмов?
8. Концепция почвы как множества сред обитания микроорганизмов?
Литература:
- Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв: Учебник. - 3-е изд., испр. и доп. - М.: Изд-во МГУ, 2005.
2. Мирчинк Т. Г. Почвенная микология. М., 1988.
3. Мишустин Е. Н., Емцев В. Т. Микробиология. М., 1987.
4. Мюллер Э., Лёффлер В. Микология. – М.: Мир, 1995.
5. Зенова Г.М., Степанов А.Л., Лихачева А.А., Манучарова Н.А. Практикум по биологии почв. М.: Изд-во МГУ, 2002. 120 с.
6. Кафедре биологии почв МГУ им. М.В. Ломоносова — 50 лет (1953—2003). М.: Природа, 2003. 116 с.