Простейшая модель эпидемии

За многие годы существования человечества огромное число людей погибло от разных эпидемий. Для того чтобы уметь бороться с эпидемиями, т. е. своевременно проводить тот или иной комплекс мероприятий (прививки, вакцины, карантин и т.д.), необходимо уметь оценить эффективность каждого такого комплекса и выбрать наиболее оптимальный для данного вида эпидемии (холера, чума, грипп, СПИД и т.д.). Оценка эффективности базируется, как правило, на прогнозе о протекании эпидемии. Отсюда вытекает задача построения модели, которая могла бы служить целям прогноза. Самой простой моделью является описание естественного хода эпидемии без применения каких-либо профилактических мероприятий.

Итак, пусть имеется N здоровых людей, и в момент времени t = 0 в эту группу попадает один заболевший человек (источник инфекции). Предположим, что удаления заболевших из группы не происходит и человек становится источником инфекции сразу же, как заразился сам.

Обозначим через x(t) число источников инфекции в момент времени t, а через y(t) – число еще не заболевших (часть из них, естественно, может заболеть с течением времени). Очевидно, что х(t) + y(t) = N +1 в любой момент времени t, причем при t = 0 выполняется условие х(0) = 1. Рассмотрим интервал времени t, t +∆ t, где ∆ t достаточно мало. Естественно, что число больных ∆х, появившихся за этот интервал, пропорционально ∆t(∆x≈∆t). Естественно также предположить, что это число пропорционально числу контактов между больными и здоровыми, т.е. произведению x(t)y(t). Таким образом, ∆x≈αx(t)y(t)dt, где α – коэффициент пропорциональности. Устремляя ∆t к нулю из последнего соотношения, получим дифференциальное уравнение

Простейшая модель эпидемии - student2.ru =αx(t)(N+1-x(t)), (9.14)

которое вместе с начальным условием

х(0)=1 (9.15)

определяет функцию x(t). Уравнение (9.14) по виду является логистическим, оно рассмотрено в предыдущем параграфе. Поэтому сразу можно записать решение x(t) задачи Коши (9.14), (9.15) в удобном виде

Простейшая модель эпидемии - student2.ru , t Простейшая модель эпидемии - student2.ru 0. (9.16)

Итак, число заболевших – функция времени. Проанализируем эту функцию. Из уравнения (9.16) вытекает, что с течением времени число заболевших может только увеличиваться, а все здоровые люди заболеют, так как Простейшая модель эпидемии - student2.ru =N+1. Конечно, это грубая модель, не учитывающая естественного иммунитета у здоровых людей к данному заболеванию.

Интересно выяснить, как меняется скорость увеличения числа больных, т. е. величина

Простейшая модель эпидемии - student2.ru , t Простейшая модель эпидемии - student2.ru 0 (9.17)

Для решения этого вопроса нужно изучить величину Простейшая модель эпидемии - student2.ru .

Дифференцируя уравнение (9.17), получаем

Простейшая модель эпидемии - student2.ru , t Простейшая модель эпидемии - student2.ru 0. (9.18)

Из этого уравнения вытекает, что при Простейшая модель эпидемии - student2.ru > 0 при t Простейшая модель эпидемии - student2.ru и Простейшая модель эпидемии - student2.ru < 0 при

t Простейшая модель эпидемии - student2.ru . Следовательно, скорость возрастания заболевших – функция Простейшая модель эпидемии - student2.ru – растет до момента t Простейшая модель эпидемии - student2.ru , а затем убывает. Несмотря на грубость модели, этот результат совпадает с экспериментальными данными: в начале эпидемии число заболевших резко возрастает, а впоследствии скорость распространения инфекции снижается.

Для сравнения приведем результаты использования более сложных моделей развития гриппозной эпидемии в Москве [22], где население составляет 8,5 млн человек. Это позволит нам также определить численные значения параметров N и α, при которых наша модель более реалистична.

Началу эпидемии соответствует число заболевших 79,1 тыс. человек, откуда N = 8,5 млн./79,1 тыс. ≈1100 человек. Пик заболеваемости приходится на 46-й день, т. е. 46 Простейшая модель эпидемии - student2.ru , откуда Простейшая модель эпидемии - student2.ru . По формуле (9.16) находим число больных Простейшая модель эпидемии - student2.ru . По отношению к 1100 чел. это составляет 11%, что согласуется с экспериментальными данными [22], где число больных равно 981 тыс. человек и составляет 11,5%. Конечно, применение соответствующих профилактических мер дает значительный положительный эффект, пик числа больных снижается с 981тыс. до 122 тыс. человек, однако создание соответствующей математической модели – существенно более трудная задача.

Матричные модели

Матричную модель можно рассматривать как конечно-разностный аналог динамической модели. Один из ранних вариантов матричной модели был разработан Льюисом и Лесли [30] как детерминистская модель, предсказывающая будущую возрастную структуру популяции самок по известной структуре в настоящий момент времени и гипотетическим коэффициентам выживания и плодовитости. Популяцию разбивают на n+1 возрастную группу (т. е. 0, 1, 2,..., п, причем каждая группа состоит из особей одного возраста), так что самая старшая группа, или группа, в которой все доживающие до данного возраста животные вымирают, имеет номер п. Обозначая через xn число особей в каждой возрастной группе, получаем вектор Простейшая модель эпидемии - student2.ru представляющий возрастную структуру в момент времени t.

Модель описывается матричным уравнением

Простейшая модель эпидемии - student2.ru (9.19)

которое запишем в развернутом виде:

Простейшая модель эпидемии - student2.ru

где величины fi,(i=0,1,...,n) представляют число самок, производимых самкой i-го возраста,

р, (i = 0,1,..., п -1) – вероятность того, что самка i-го возраста доживет до возраста i+1.

Покажем, что поведение модели можно предсказать, анализируя некоторые формальные свойства матрицы А. Во-первых, последовательно умножая уравнение (9.19) на матрицу А, легко получить более общие уравнения для численности возрастных групп к моменту времени

Простейшая модель эпидемии - student2.ru (9.21)

Во-вторых, поскольку матрица А квадратная с (n+1) строками и столбцами, она имеет n+1 собственных чисел (с учетом кратности) и (n+1) собственных (и присоединенных) векторов. Элементы А являются либо положительными числами, либо нулями, поэтому наибольшее (по абсолютной величине) собственное число и координаты отвечающего ему собственного вектора положительны и при этом имеют определенный экологический смысл. Проиллюстрируем это на одной из простейших моделей, предложенных Уильямсоном [54].

Исходная популяция имеет вектор, представляющий возрастную структуру а0 = (0,0,1), т. е. популяция состоит из одной самки старшего возраста. Матрица А имеет вид:

Простейшая модель эпидемии - student2.ru

По прошествии одного временного интервала имеем

Простейшая модель эпидемии - student2.ru

т. е. a1 = (12, 0, 0) и в популяции уже будет 12 самок младшего возраста. Повторное применение модели дает следующие результаты:

Простейшая модель эпидемии - student2.ru

и т.д.

Главное собственное число и собственный вектор матрицы А можно найти известными методами, имея

Простейшая модель эпидемии - student2.ru (9.22)

или полагая Простейшая модель эпидемии - student2.ru – систему линейных алгебраических уравнений

Простейшая модель эпидемии - student2.ru

определитель которой

Простейшая модель эпидемии - student2.ru

Следовательно, главное собственное число λ1 = 2 и собственный вектор в силу (9.23) имеет вид Простейшая модель эпидемии - student2.ru = (24, 4,1). Остальные собственные числа в силу (9.24) имеют вид λ2 =-1, λ3 =-1. В силу (9.23) собственный вектор Простейшая модель эпидемии - student2.ru имеет вид Простейшая модель эпидемии - student2.ru = (6,-2,1). Так как собственное число -1 двукратно, то для нахождения вектора Простейшая модель эпидемии - student2.ru (называемого присоединенным), решаем систему уравнений (A- λ2) Простейшая модель эпидемии - student2.ru = Простейшая модель эпидемии - student2.ru :

(9.25)
Простейшая модель эпидемии - student2.ru

Нетрудно проверить, что система (9.25) допускает решение Простейшая модель эпидемии - student2.ru = (0, - 2, 2). Привлекая геометрические соображения, заключаем, что возрастная структура популяции представляется вектором в трехмерном пространстве, в котором векторы Простейшая модель эпидемии - student2.ru = (24,4, 2), Простейшая модель эпидемии - student2.ru = (6, - 2,1) и Простейшая модель эпидемии - student2.ru = (0, - 2, 2) – базисные, т. е.

Простейшая модель эпидемии - student2.ru (9.26)

где α0, β0, γ0 – некоторые положительные числа (например, если Простейшая модель эпидемии - student2.ru = (258, 30, 17), то α0=10, β0=3, γ0=2).

Тогда уравнение (9.21) примет вид:

Простейшая модель эпидемии - student2.ru (9.27)

Так как Простейшая модель эпидемии - student2.ru → 0, k → ∞, то при t=+k → ∞популяция возрастает по экспоненциальному закону

Простейшая модель эпидемии - student2.ru (9.28)

Главное собственное число λ1 дает скорость, с которой возрастает размер популяции (в нашем примере за каждый временной интервал популяция удваивается), а собственный вектор Простейшая модель эпидемии - student2.ru определяет устойчивую возрастную структуру популяции, т. е. отношение численностей особей разных возрастных групп остается постоянным и равным 24:4:1. Нетрудно видеть, что если мы в конце каждого временного интервала будем изымать половину популяции и использовать на корм, то размер ее станет равным исходному Простейшая модель эпидемии - student2.ru .

Матричные модели очень удобны для расчета на ЭВМ и находят все более широкое применение, например, для анализа круговорота питательных веществ в экосистемах, в различных стохастических моделях [54] (в марковских моделях и т.д.).

Контрольные задания

1. Показать, что график логистического уравнения имеет единственную точку перегиба. Найти ее и дать биологическую интерпретацию.

2. Рассмотреть систему Вольтерра в случае Простейшая модель эпидемии - student2.ru . Найти отношения Простейшая модель эпидемии - student2.ru .

3. Построить и исследовать модель эпидемии в городе с 300-тысячным населением.

4. Исходная популяция имеет следующую возрастную структуру a0 = (0,6,12) и матрица Лесли А – следующий вид:

Простейшая модель эпидемии - student2.ru

Найти (приближенно) численность популяции через достаточно большое число п лет и ее устойчивую возрастную структуру.

Наши рекомендации