Трофическая структура экосистем. Экологические пирамиды

Трофическая структура. Виды, входящие в состав экосистемы, связаны между собой пищевыми связями, так как служат объектами питания друг для друга.

В водоеме продуцентами являются зеленые водоросли. Их поедают мелкие растительноядные ракообразные (дафнии, циклопы) - консументы (потребители) первого порядка. Этих животных потребляют в пищу плотоядные личинки различных водяных насекомых (например, стрекоз). Это консументы (потребители) второго порядка. Личинками питаются мелкие рыбы (например, плотва) - консументы (потребители) третьего порядка. А рыбы становятся добычей щуки - консумента (потребителя) четвертого порядка. Такуюпоследовательность питающихся друг другом организмов называют пищевой, или трофической, цепью. Отдельные звенья трофической цепи называют трофическими уровнями.

Пищевые цепи состоят, как правило, из трех - пяти звеньев, например: растения овцы человек; растения кузнечики ящерицы орел; растения насекомые лягушки змеи орел.

Различают два типа трофических (пищевых) цепей. Пищевые цепи, которые начинаются с растений, идут через растительноядных животных к другим потребителям, называютпастбищными или цепями выедания. Их примеры приведены выше. Пищевые цепи другого типа начинаются с отмерших растений, трупов или помета животных и идут к мелким животным и микроорганизмам. Эти цепи называют детритными, или цепями разложения. Например: мертвые ткани растений грибы многоножки кивсяки грибы ногохвостки коллемболы хищные клещи хищные многоножки бактерии.

Линейные пищевые цепи - большая редкость в природе. Как правило, пищевые цепи в экосистеме тесно переплетаются. Совокупность пищевых связей в экосистеме образует пищевые сети, в которых многие консументы служат пищей нескольким членам экосистемы. В то же время некоторые животные могут принадлежать сразу к нескольким трофическим уровням, так как питаются и растительной, и животной пищей, то есть являются всеядными (например, медведь).

Из-за сложной структуры пищевой сети исчезновение вида, как правило, почти не сказывается на экосистеме. Питавшиеся особями этого вида организмы находят другие источники пищи. А пищу, которую потребляли животные исчезнувшего вида, начинают использовать другие потребители. Это обеспечивает экосистеме длительное и устойчивое существование. И чем богаче видовая структура экосистемы, тем она устойчивее.

Правило экологической пирамиды. Пищевые сети, возникающие в экосистеме, имеют структуру, для которой характерно определенное число организмов на каждом трофическом уровне. Замечено, что число организмов прямо пропорционально уменьшается при переходе с одного трофического уровня на другой. Такая закономерность получила название "правило экологической пирамиды". В данном случае рассмотрена пирамида чисел. Она может нарушаться, если мелкие хищники живут благодаря групповой охоте на крупных животных.

Для каждого трофического уровня характерна своя биомасса - суммарная масса организмов какой-либо группы. В пищевых цепях биомасса организмов на разных трофических уровнях различна: биомасса продуцентов (первый трофический уровень) значительно выше, чем биомасса консументов - растительноядных животных (второй трофический уровень). Биомасса каждого из последующих трофических уровней пищевой цепи также прогрессивно уменьшается. Эта закономерность получила название пирамиды биомасс.

Аналогичную закономерность можно выявить при рассмотрении передачи энергии по трофическим уровням, то есть в пирамиде энергии. Растения усваивают в процессе фотосинтеза лишь незначительную часть солнечной энергии. Растительноядные животные, составляющие второй трофический уровень, усваивают лишь некоторую часть (20-60 %) от поглощенного корма. Усвоенная пища идет на поддержание процессов жизнедеятельности организмов животных и рост (например, на построение тканей, запасы в виде отложения жиров).

Организмы третьего трофического уровня (хищные животные) при поедании растительноядных животных вновь теряют большую часть заключенной в пище энергии. Количество энергии на последующих трофических уровнях вновь прогрессивно уменьшается. Результатом этих потерь энергии является небольшое число (три-пять) трофических уровней в пищевой цепи.

Подсчитано, что с одного трофического уровня на другой передается лишь около 10% энергии. Эта закономерность получила название "правило десяти процентов".

Таким образом, пирамида чисел отражает число особей в каждом звене пищевой цепи. Пирамида биомасс отражает количество образованного на каждом звене органического вещества - его биомассу. Пирамида энергии показывает количество энергии на каждом трофическом уровне.

Графически это правило изображают в виде пирамид с широким основанием и узкой вершиной. Пирамиду составляют прямоугольники, которые изображают разные звенья пищевой цепи.

9. Свойства экосистем: гомеостаз и продуктивность. Управление в системах. Первичная и вторичная продукция, уравнение энергетического баланса экосистем.

Гомеостаз — способность биологических систем — организма, популяции и экосистем — противостоять изменениям и сохранять равновесие. Исходя из кибернетической природы экосистем — гомеостатический механизм — это обратная связь. Например, у пойкилотермных животных изменение температуры тела регулируется специальным центром в мозге, куда постоянно поступает сигнал обратной связи, содержащий данные об отклонении от нормы, а от центра поступает сигнал, возвращающий температуру к норме. В механических системах аналогичный механизм называют сервомеханизмом, например, термостат управляет печью.

Для управления экосистемами не требуется регуляция извне — это саморегулирующаяся система. Саморегулирующий гомеостаз на экосистемном уровне обеспечен множеством управляющих механизмов. Один из них — субсистема «хищник—жертва» (рис. 5.3). Между условно выделенными кибернетическими блоками управление осуществляется посредством положительных и отрицательных связей. Положительная обратная связь «усиливает отклонение», например увеличивает

Первичная и вторичная продукция. Скорость создания органического вещества в экосистемах называется биологической продукцией, а масса тела живых организмов — биомассой. Следовательно, биологическая продукция экосистем — это скорость создания в них биомассы.

Органическая масса, создаваемая растениями за единицу времени, называется первичной продукцией сообщества, а продукция животных или других консументов — вторичной. Очевидно, что вторичная продукция не может быть больше первичной или даже равной ей. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах — эквивалентном числе джоулей.

Валовая первичная продукция — количество вещества, которое создается растениями за единицу времени при данной скорости фотосинтеза. Первичную биологическую продукцию экосистем ограничивают или неблагоприятные климатические факторы (недостаток тепла, влаги) или нехватка биогенных элементов.

Часть производимой продукции идет на поддержание жизнедеятельности самих растений (затраты на дыхание). В тропических лесах и зрелых лесах умеренной полосы она составляет 40—70% валовой продукции. Около 40% составляют затраты на дыхание у большинства сельскохозяйственных культур.

Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию. Представляя собой величину прироста биомассы растений, она является энергетическим резервом для консументов и редуцентов. Постепенно перерабатываясь в цепях питания, она идет на пополнение биомассы гетеротрофных организмов.

Правило пирамид. Всем экосистемам отвечают определенные соотношения первичной и вторичной продукции, называемые правилом пирамиды продукции: на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем.

Например, масса всех трав, выросших за год в степи, значительно больше, чем годовой прирост всех растительноядных животных, а прирост хищников меньше, чем растительноядных животных.

Указанное правило отображают в виде пирамид, сужающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты. Длина этих прямоугольников соответствует масштабам продукции на соответствующих трофических уровнях.

Известно, что основными продуцентами в океане являются одноклеточные водоросли, отличающиеся высокой скоростью оборота генераций. Как следствие, их годовая продукция может в десятки и даже сотни раз превышать запас биомассы на данный момент времени. Вся чистая первичная продукция так быстро вовлекается в цепи питания, т.е. поедается, что накопление биомассы водорослей весьма мало. Тем не менее из-за высоких темпов размножения небольшой их запас вполне достаточен для поддержания скорости воссоздания органического вещества. Поэтому для океана пирамида биомасс имеет перевернутый вид. На высших трофических уровнях преобладает тенденция к накоплению биомассы, поскольку длительность жизни крупных хищников (например, кита-касатки) велика, скорость оборота этих генераций (поколений), наоборот, мала, и в их телах задерживается значительная часть вещества, поступающего по цепям питания.

В тех трофических цепях, где передача происходит в основном через связи «хищник-жертва», справедливо правило пирамиды чисел: общее число особей, которые участвуют в цепях питания, с каждым последующим звеном уменьшается.

Поясним это правило. Хищник обычно крупнее своих жертв и для поддержания собственной биомассы ему нужно несколько или много жертв. Однако бывают случаи, когда более мелкие хищники живут за счет групповой охоты на крупных животных.

Подчеркнем, что из правила пирамиды биологической продукции нет исключений, потому что оно отражает законы передачи энергии в цепях питания.

Пирамида энергии более точно отображает трофические связи организмов, поскольку она характеризует скорость возобновления биомасс. На каждом уровне пирамида энергии отражает удельное количество энергии (на единицу площади или объема), прошедшей через предыдущий трофический уровень за данный отрезок времени. Пирамиды потоков энергии никогда не бывают «перевернутыми»: следующий трофический уровень может «пропустить через себя» лишь часть энергии, усвоенной предыдущим уровнем (вспомните правило 10%).

Изучение законов продуктивности экосистем, возможность количественного учета потока энергии чрезвычайно важны в практическом отношении, так как первичная продукция агроценозов и эксплуатируемых человеком природных сообществ — основной источник запасов пищи для человечества. Весьма важна и вторичная продукция, которую получают за счет сельскохозяйственных и промышленных животных: животные белки содержат целый ряд незаменимых для человека аминокислот, которых нет в растительной пище. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы обеспечить наибольший выход необходимой для людей продукции. Наконец, очень важно хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем. В противном случае может быть подорвана их продуктивность.

10. Экологическая сукцессия.

Сукцессия и климакс экосистем. Изменение внешних условий среды влияет на некоторые виды неблагоприятно, другие же виды могут от этого, наоборот, выиграть. Подчас изменившиеся условия позволяют включиться в экосистему новым видам. В целом происходит так называемая сукцессия (от лат. succesio — преемственность) — последовательная необратимая смена биоценозов, преемственно возникающих на одной и той же территории в результате влияния природных факторов или воздействия человека.

Различают первичные и вторичные сукцессии.

Первичной сукцессией называется процесс развития и смены биоценозов на незаселенных ранее участках, начинающийся с колонизации последних. Известный пример — постепенное обрастание голой скалы с развитием в конечном итоге на ней леса.

Вторичная сукцессия происходит на месте сформировавшегося ранее биоценоза после его нарушения по какой-либо причине (пожар, вырубка леса, засуха и т.п.). В современных условиях вторичные изменения наблюдаются повсеместно. Так, в Беларуси уничтожение части лесов в годы Великой Отечественной войны и последующие вырубки привели к замене коренных лесов (сосновых, дубовых, еловых) менее ценными (березовыми, осиновыми, сероольховыми).

Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют, однако, относительно постоянную численность и дальнейшей смены ее состава не происходит. Такое равновесное состояние называют климаксом, а экосистему - климаксовой. В такой экосистеме существует равновесие между связанной ею энергией и энергией, затрачиваемой на поддержание жизнедеятельности своих компонентов. Таким образом, климаксовый биоценоз находится в состоянии гомеостаза. В разных абиотических условиях формируются различные климаксовые экосистемы. В сухом и жарком климате это будет пустыня; в жарком, но влажном — тропические леса.

При сукцессиях изменения происходят постепенно: это более или менее упорядоченный процесс замещения одних видов другими, на всех стадиях которого экосистема достаточно сбалансирована и разнообразна. Однако возможны и внезапные изменения, которые вызывают популяционный взрыв некоторых видов за счет гибели многих других. В таких случаях приходится говорить уже не о сукцессии, а об экологическом нарушении. Последнее возникает, например, в результате сброса богатых биогенами сточных вод в естественные водоемы, что вызывает бурный рост некоторых водорослей. Иногда изменения могут быть столь резкими, что практически ни один исходный компонент экосистемы не сохраняется, и тогда наступает ее гибель. Впоследствии на освободившемся месте могут поселиться другие виды, которые способны выдержать новые условия, т.е. фактически начинается новая сукцессия. При этом важно подчеркнуть, что, если не считать землетрясений, извержений вулканов и других катастроф, естественные изменения экосистем обычно протекают медленно, по типу сукцессий. В то же время вмешательство человека, в частности военные действия, бывает подчас настолько внезапным и глубоким, что может привести к гибели экосистем.

Эволюционная сукцессия. В результате естественного отбора различные виды организмов все более приспосабливаются к сосуществованию с хищниками и паразитами, к климатическим условиям и другим биотическим и абиотическим факторам. Однако ни один вид, за исключением человека, не способен предвидеть будущие изменения среды, а тем более подготовиться к ним. Как следствие, при резком изменении любого абиотического или биотического фактора (например, при похолодании или интродукции нового вида) вид, плохо приспособленный к новым условиям, ожидает один из трех вариантов: миграция, адаптация или вымирание.

В том случае, когда одни виды вымирают, а выжившие особи других размножаются, адаптируются и изменяются под действием естественного отбора, говорят об эволюционной сукцессии. Это означает, что в разные периоды своей истории Земля была населена разными существами, что доказывается обнаруженными ископаемыми остатками растений и животных.

Известно, что первое условие адаптации — выживание и размножение хотя бы нескольких особей в новых условиях. Это обусловлено двумя факторами: разнообразием генофонда вида и степенью изменения среды. Если генофонд весьма разнообразен, т.е. включает много аллелей, то даже при сильных изменениях среды некоторые особи сумеют выжить. Напротив, при низком разнообразии генофонда, малейшие колебания внешних условий могут вызвать вымирание вида, так как аллелей, позволяющих особям противостоять неблагоприятным условиям среды, может и не найтись.

С другой стороны, степень изменения окружающей среды важна ничуть не меньше. Если она малозаметна, большинство видов сумеет приспособиться и выжить. При этом чем резче изменения, тем большее разнообразие генофонда потребуется для выживания. Можно представить себе даже такие катастрофические изменения (например, в случае ядерной войны), что не выживет ни один вид. Отсюда следует весьма важный принцип (по Б. Небелу): выживание вида обеспечивается его генетическим разнообразием и слабым воздействием внешних условий.

К генетическому разнообразию и изменению среды можно добавить еще один фактор — географическое распространение. При этом чем шире распространен вид, тем, как правило, больше его генетическое разнообразие, и наоборот. Помимо этого, при достаточно обширном ареале некоторые его участки могут оказаться удаленными или изолированными от районов, где нарушались в худшую сторону условия существования. Тогда на этих участках вид сохранится, даже если исчезнет из других мест. Если в новых условиях часть особей выжила, восстановление популяции и ее дальнейшая адаптация будут определяться прежде всего скоростью воспроизведения, поскольку изменение признаков происходит только путем отбора в каждом поколении. Так, пара насекомых обычно дает несколько сотен потомков, которые проходят весь жизненный цикл за несколько недель. Следовательно, скорость воспроизведения здесь в тысячи раз выше, чем у птиц, которые способны выкормить 2—6 птенцов в год, а значит, и одинаковый уровень приспособленности к новым условиям разовьется во столько же раз быстрее. Именно поэтому насекомые быстро адаптируются и приобретают устойчивость к применяемым против них пестицидам, тогда как другие виды от этих обработок погибают. Аналогичный вывод можно сделать и относительно радиационного воздействия.

Наши рекомендации