Графическое изображение рядов распределения

Ряды распределения удобно изучать с помощью графического метода, позволяющего судить и о форме распределения. Наглядное представление о характере изменения частот вариационного ряда дают полигон частот и гистограмма.

Полигон используется при изображении дискретных вариационных рядов. Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные значения варьирующего признака, а по оси ординат наносится шкала для выражения величины частот. Полученные на пересечении абсцисс и ординат точки соединяются прямыми линиями, в результате этого получают ломаную линию, называемую полигоном частот.

Гистограмма применяется для изображения интервального вариационного ряда. При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам. В результате получим гистограмму – график, на котором ряд распределения изображен в виде смежных друг с другом столбиков.

Понятие корреляционной связи. Поле корреляции.

Различают два вида зависимости между экономическими явле­ниями: функциональную и статистическую. Зависимость между дву­мя величинами X и Y, отображающими соответственно два явле­ния, называется функциональной, если каждому значению величины x соответствует единственное значение величины Y и наоборот. Примером функциональной связи в экономике может служить за­висимость производительности труда от объема произведенной продукции и затрат рабочего времени. При этом следует отметить, что если Х – детерминированная, не случайная величина, то и фун­кционально зависящая от нее величина Y тоже является детерминированной. Если же Х – величина случайная, то и Y также случай­ная величина.

Корреляционная связь– частный случай статистической связи, при котором разным значениям переменной соответствуют разные средние значения другой переменной. Корреляционная связь предполагает, что изучаемые переменные имеют количественное выражение.

Если изучается связь между двумя признаками, налицо парная корреляция; если изучается связь между многими признаками – множественная корреляция.

В качестве примера на рис. 1 представлены данные, иллюстри­рующие прямую зависимость между х и у (рис. 1, а) и обратную зависимость (рис. 1, б). В случае «а» это прямая зависимость между, к примеру, среднедушевым доходом (х) и сбережением (у) в семье. В случае «б» речь идет об обратной зависимости. Такова, наш пример, зависимость между производительностью труда (х) и себе­стоимостью единицы продукции (у

Основные типы корреляции

Прямые и обратные связи

В зависимости от направления действия функциональные и стохастические связи могут быть прямыми и обратными. При прямой связи направление измене­ния результативного признака совпадает с направлением изменения признака-фактора. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалифика­ция рабочего (разряд), тем выше уровень производительности труда – прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции – обратная связь.

Прямолинейные и криволинейные связи. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически — прямой линией. Отсюда ее более короткое название — линейная связь.

При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).

Однофакторные и многофакторные связи

По количеству факторов, действующих на результативный признак, связи различаются однофакторные (один фактор) и многофакторные (два и более факторов).

Наши рекомендации