Пересечение двух поверхностей второго порядка

В случае пересечения двух кривых поверхностей второго порядка образуется пространственная кривая четвертого порядка.

Для построения линии пересечения поверхностей следует найти достаточное количество точек, в том числе характерных – высшую и низшую на очерковых образующих. Определение положения точек может быть достигнуто двумя способами: способом вспомогательных плоскостей и способом вспомогательных сфер. Первый способ применяют, если вспомогательные плоскости пересекают поверхности по графически простым линиям, например, окружностям. Использование этого способа характерно для тел, оси вращения которых параллельны или пересекаются (скрещиваются) под прямым углом. Второй способ применяют, когда оси вращения тел пересекаются не под прямым углом.

Способ вспомогательных плоскостей (рис. 63). В качестве плоскости-посредника целесообразно использовать горизонтальную плоскость уровня α, т.к. она рассекает обе поверхности по окружности.

Методика определения точек линии пересечения поверхностей анало­гична методике, приведенной выше (см. пересечение многогранника с поверхностью второго рода).

При построении линии пересечения (рис. 63) опорными точками являются:

– точки 1 и 2 как точки пересечения фронтальной очерковой конуса с главным меридианом сферы;

– точки 3 и 4 как точки пересечения экватора сферы с конусом (точки смены видимости линии пересечения на горизонтальной плоскости проекций).

А промежуточными точками были выбраны точки 5, 6, 7 и 8.

По этим точкам, с учетом видимости, строится линия пересечения конуса и сферы:

– на фронтальной проекции видна ближняя часть кривой (12-42-62-22) и не видна дальняя (12-32-52-22);

– кривая пересечения поверхностей на фронтальной проекции симметрична, значит (12-42-62-22) ≡ (12-32-52-22);

– на горизонтальной проекции видна часть кривой (31-72-11-81-41), расположенная выше экватора сферы, а часть кривой (31-52-21-61-41), расположенная ниже экватора сферы.

Способ вспомогательных сфер. Способ секущих сфер основан на том, что сфера с центром на оси тела вращения пересекает это тело по окружностям (теорема Монжа). Геометрическая интерпретация этого положения показана на примере пересечения конуса и сферы (рис. 64). Здесь линии пересечения m и n являются окружностями.

Способ вспомогательных сфер применяется для построения линии пересечения поверхностей тел вращения, имеющих пересекающиеся оси. Кроме того, оси этих тел параллельны одной из плоскостей проекций т.е. образуют плоскость уровня.

Пересечение двух поверхностей второго порядка - student2.ru

Рис. 63

Пересечение двух поверхностей второго порядка - student2.ru Рис. 64

Рассмотрим построение линии пересечения на примере конуса и цилиндра (рис. 65).

Выберем центр вспомогательных сфер в точке пересечения осей задан­ных поверхностей (точка О).

Опорные точки 1 и 2на очерковых образующих, расположенные в одной плоскости, определяются непосредственно. Линия пересечения заключается между этими точками. Одна из них определяет максимальный радиус вспомогательных сфер Rmax = O212 (наиболее удаленная фронтальная проекция от точки пересечения осей О2). Минимальный радиус Rminберется наи­большим радиусом сферы, которую можно вписать в одну из заданных поверхностей, при этом пересекая другую поверхность.

Для построения промежуточных точек проводят несколько вспомо­гательных сфер (Rmin<R<Rmax). Эти сферы пересекают заданные поверхности по окружностям b и п. Окружности b и п, пересекаясь, дают дополнительные точки линии пересечения 3 и 4, проекции которых определяются вначале на π2 (b2∩п2=32 и b2∩п2=42), а затем на плоскости π1 как точки окружностей радиусами r.

Полученные точки (опорные и промежуточные) последовательно соединяют на фронтальной и горизонтальной проекциях.

На фронтальной проекции видна ближняя часть кривой (12-42-22) и не видна дальняя (12-32-22). Кривая пересечения поверхностей симметрична, значит (12-42-22)≡(12-32-22). На горизонтальной проекции видна часть кривой (... -31-11-41– ...), проекции точек которой расположены выше фронтальной проекции оси симметрии наклонного цилиндра. В этом случае границей видимости линии пересечения на горизонтальной проекции служат точки на горизонтальных проекциях очерковых образующих наклонного цилиндра.

Пересечение двух поверхностей второго порядка - student2.ru

Рис. 65

4.8. Контрольные вопросы.

1. Как изображаются многогранники на эпюре?

2. Как определяются точки на поверхности многогранника?

3. Перечислите элементы аппарата получения поверхностей.

4. Как образуются поверхности вращения?

5. Как изображаются поверхности на эпюру?

6. Как называются очерки сферы на эпюре?

7. Как определяются точки и линии на поверхностях?

8. Как строится линия сечения поверхности проецирующей плоскостью?

9. Каков алгоритм решения задач по определению точек встречи прямой с поверхностью?

10. Как определяется на эпюре видимость прямой относительно поверхности?

11. Как строят линию пересечения двух поверхностей?

12. Какова типа линия пересечения двух многогранников?

13. Расскажите алгоритм определения линии пересечения двух многогранников.

14. В чём сущность способа вспомогательных секущих плоскостей при построении линии пересечения двух поверхностей?

15. Каков алгоритм решения задач на определение линии пересечения многогранника с телом вращения?

16. Каков принцип построения линии пересечения двух поверхностей вращения, оси которых параллельны или пересекаются (скрещиваются) под прямым углом?

17. По каким линиям пересекаются соосные поверхности?

18. В чём суть теоремы Монжа?

19. В каких случаях удобно применять метод секущих сфер?

20. Каков принцип построения линии пересечения двух поверхностей методом секущих сфер?

Лекция 5. РАЗВЕРТКИ

5.1. Общие сведения.

5.2. Развертка пирамиды.

5.3. Развертка призмы.

5.4. Развертка конической поверхности общего вида.

5.5. Развертка наклонного цилиндра.

5.6. Частные случаи разверток.

5.7. Развертка сферы.

5.8. Контрольные вопросы.

Общие сведения

Разверткой поверхности называется плоская фигура, полученная в результате совмещения поверхности с плоскостью. Построение разверток поверхностей имеет большое практическое применение при изготовлении различных изделий из листового материала. Это обшивка самолётов и судов, всевозможные резервуары и трубопроводы в нефтехимической и газовой промышленности, изделия швейной и кожевенной промышленности и т.д.

Для построения развёртки используются ортогональные проекции по­верхности. Связь между ними описывается инвариантным свойством со­хранения площадей соответствующих фигур. Это свойство влечёт за собой ещё такие свойства:

– длины соответствующих линий поверхности и её развёртки равны;

– углы, образованные линиями поверхности, равны углам, состав­ленным их образами на развёртке;

– прямая поверхности отображается на прямую развёртки;

– параллельные прямые поверхности отображаются на параллельные прямые развёртки.

Разработка наиболее простых и точных способов построения разверток необходима для изготовления тонкостенных изделий заданной формы и размеров. Чем рациональнее и точнее способ выполнения разверток и их раскроя, тем экономичнее технология изготовления изделий. При этом экономятся листовой материал и рабочее время.

Теоретически точно развертываются поверхности многогранников, прямых круговых конусов и цилиндров. Приближенными развертками являются развертки поверхностей наклонных конусов и цилиндров, а развертки сфер относятся к условным.

В общем случае, построение любой развертки сводится к построению натуральной величины и формы элементов, составляющих поверхность.

Развертка пирамиды

Развертка пирамиды относится к точным разверткам. Ее получения основывается на способе построения треугольника по трем известным сторонам, где в качестве сторон треугольника используются натуральные величины ребер пирамиды.

Поэтому для построения развертки пирамиды (рис. 66) необходимо найти натуральные величины ее боковых ребер и основания.

Основание пирамиды представляет собой треугольник, изображенный в натуральную величину на плоскости π1, так как является горизонтальной плоскостью уровня.

Для определения натуральных величин боковых ребер воспользуемся способом прямоугольного треугольника. Так в треугольнике ∆S0S Пересечение двух поверхностей второго порядка - student2.ru B Пересечение двух поверхностей второго порядка - student2.ru горизонтальной проекции ребра S1B1, а катет S0S Пересечение двух поверхностей второго порядка - student2.ru – разности координат по оси 0Z его концов. Следовательно, гипотенуза S0B Пересечение двух поверхностей второго порядка - student2.ru , этого треугольника, есть натуральная величина ребра SB. Аналогично находятся и другие натуральные величины ребер.

Пересечение двух поверхностей второго порядка - student2.ru

Рис. 66

После определения натуральных величин ребер строится развертка боковой поверхности пирамиды. Для этого на любом из ребер, например, S0A0 (или отдельно), последовательно строятся треугольники каждой грани по трем известным их сторонам: ∆S0A0B0 → ∆S0B0C0 → ∆S0C0A0. Следует помнить, что построение боковых граней заканчивается тем же ребром, с которого начинается построение развертки боковой поверхности пирамиды. После построения боковой поверхность пирамиды к любому ребру основания пирамиды пристраивается ее основание.

Нанесение линии на развертку производится по точкам. Количество точек зависит от сложности конфигурации линии. Для определения положения любой точки поверхности на развертке, например, точки N, вначале находят положения проекций k1 и k2, прямой k,проходящей через вершину S и данную точку. Затем прямую k наносят на развертку при условии, что [А010]=[А111]. Далее, используя теорему Фалеса, определяется истинное положение точки N0 на развертке.

Развертка призмы

Развертка призмы может осуществляется несколькими способами, одними из которых являются способ раскатки и способ нормального сечения.

Способ раскатки. В общем случае каждая грань призмы (рис. 100) имеет форму параллелограмма. В данном примере натуральные величины ребер определяется на плоскости π2, а оснований – на плоскости π1.

Если в исходных данных призма занимает общее положение, то необходимо способами преобразования эпюра преобразовать его проекции так, чтобы грани призмы были либо фронталями, либо горизонталями, а плоскости оснований – плоскостями уровней.

Развертка боковой поверхности осуществляется совмещением граней призмы с плоскостью проекций. Для этого все точки вращают в плоскостях, перпендикулярных проекциям ребер, а расстояния между ребрами берутся равными соответственно величинам сторон основания.

Рассмотрим на примере (рис. 67). За начало развертки принимается одна из фронтальных проекций ребра (на примере – С0Е02Е2). Из проекции вершины F2 проводится перпендикуляр к фронтольной проекции ребра B2F2. Принимая вершину Е0 за центр окружности делается засечка на перпендикуляре радиусом равным E1F1. Полученная засечка является вершиной параллелограмма F0. Используя вершину F0, ребро С0Е0и принцип параллельности достраивается параллелограмм E0C0B0F0. Далее аналогично строится грани A0B0F0D0 и A0D0E0C0.

После построения развертки боковой поверхности к ней пристраиваются основания.

Нанесение линии на развертку производится точкам. Для определения положения любой точки поверхности на развертке, например, точки N, вначале находят положения проекций k1 и k2 прямой k,которая параллельна боковым ребрам призмы и которой принадлежит эта точка. Затем прямую k наносят на развертку при условии, что [A0K0]=[A1K1].Далее, используя [K2N2]=[K0N0], определяют истинное положение точки N0.

Пересечение двух поверхностей второго порядка - student2.ru

Рис. 67

Способ нормального сечения. Сущность данного способа построения развертки призмы заключается в следующем.

Заданную призму пересекается плоскостью, перпендикулярной боковым рёбрам, и строится проекция и натуральная величина сечения призмы этой плоскостью (нормальное сечение). Также определяются натуральные величины отрезков боковых рёбер призмы, лежащих выше и ниже нормального сечения.

На рис. 68 показано:

– натуральная величина нормального сечения (∆142434) призмы АВСDEF, полученное сечением ее фронтально-проецирующей плоскостью α с использованием способа замены плоскостей проекций;

– натуральные величины ребер и их деления секущей плоскостью определяется на плоскости π2;

– натуральные величины оснований определяются на плоскости π1.

Для построения развертки на свободном поле эпюра проводится горизонтальная линия и на ней от произвольной точки откладываются друг за другом стороны нормального сечения призмы: [1-2]→[2-3]→[3-1].

Пересечение двух поверхностей второго порядка - student2.ru Пересечение двух поверхностей второго порядка - student2.ru

Рис. 68

Через полученные точки 1, 2, и 3 проводятся вертикальные прямые линии, на которых вниз откладываются натуральные величины отрезков боковых рёбер призмы, лежащих ниже нормального сечения, а вверх – натуральные величины отрезков боковых рёбер призмы, лежащих выше нормального сечения. Соединяя построенные точки между собой отрезками прямых, получается развертка боковой поверхности призмы. Достроив к ней натуральные величины верхнего и нижнего оснований, получается полная развертка поверхности призмы.

Нанесение линии на развертку производится точкам. Для определения положения любой точки поверхности на развертке, например, точки N, вначале находят положения проекций k1 и k2 прямой k,которая параллельна боковым ребрам призмы и которой принадлежит эта точка. Эта прямая пересекает нормальное сечение в точке 4. Используя проекцию 44 на натуральной величине нормального сечения, а также натуральную величину отрезка 4N определяется положение точки N на развертке.

Наши рекомендации