Возникновение классической науки
Классическое естествознание признается многими исследователями в качестве первой исторической формы строгой науки. Причем важно отметить, что наука как зрелое социальное явление появляется именно тогда, когда формируется четкий «социальный заказ» на ее деятельность. И строгая наука как развернутая система знания не случайно появляется именно в Новое время и именно в Западной Европе. Дело в том, что буржуазные отношения не могут успешно развиваться без опоры на научно-технический прогресс, в то время как докапиталистические формы общественного производства вполне обходились без научно-технического прогресса, и более того — в основном отторгали его.
В становлении классической науки сыграли свою принципиальную роль многие факторы, но особенно изменения в математике, связанные прежде всего с выделением дифференциального исчисления, внесшим качественные модификации в само понимание научного знания и методов науки.
Одним из первых прорывов в становлении строгой науки явилось провозглашение польским астрономом Н. Коперником (1473—1543) Земли небесным телом, движущимся подобно другим небесным объектам. Интересно, что идеи Коперника противоречили не только церковным догматам, доминировавшим тогда в общественном сознании, но и элементарному житейскому опыту людей. Ведь наши органы чувств не фиксируют движение Земли как таковой — нам кажется, что движутся иные небесные тела, но не наша планета.
Учеными того времени была поставлена проблема логической и математической согласованности всех основных выводов естественной науки с опорой на идею о целостности Вселенной и единообразия царящих в ней законов природы. Тем самым гармония научных построений стала основываться на гипотезе о гармонии самой природы.
Большой вклад в развитие таких представлений о науке внес итальянский физик и астроном Г. Галилей (1564—1642). Вслед за ним многие ученые того времени продолжали процесс построения базовой дисциплины естествознания XVII—XIX вв. — классической механики. Идеализированные объекты, на которые они опирались в своих рассуждениях, представали при этом как идеальные элементарные объекты, элементарные процессы, пространственно-временные отношения на базе неизменных и независимых друг от друга абсолютного пространства (трехмерного и подчиняющегося геометрическим требованиям древнегреческого математика Евклида (IV — начало III в. до н.э.) и абсолютного, неизменного, божественно заданного времени. В таком мире господствовали жесткие, хорошо прогнозируемые формы причинно-следственных связей.
Не случайно в классической науке французским математиком и астрономом П. Лапласом (1749—1827) был разработан принцип «железного детерминизма», суть которого в том, что равные действия при равных условиях всегда приводят к одинаковым результатам. Иными словами, создав равенство условий осуществления процессов и явлений, а, также приложив равные импульсы усилий, ученые всегда в своих опытах и экспериментах могут повторить любое явление природы.
Материя — принципиальное, опорное понятие для любой формы естественнонаучного знания — понималась в этих условиях исключительно как вещество, совокупность вещественных объектов, тел, состоящих из неделимых атомов и представленных в трех агрегатных состояниях — твердом, жидком и газообразном.
Введение системы координат и разработка математики переменных величин вооружили ученых универсальным средством теоретического изображения механического движения, сочетающего в себе высокую степень абстракции (изображение движения тела математической функцией) с высокой степенью наглядности (траектория перемещения тел графика функций в заданной системе координат).
Однако теоретическое знание невозможно без выявления конкретных форм детерминации исследуемых явлений, и прежде всего базовых законов взаимодействия и изменения состояний. Эту принципиальную задачу в классической науке выполнил английский физик и механик И. Ньютон (1643—1727), введя понятие силы как причины изменения состояний движения. В механике Ньютона источниками и точками приложения сил являются материальные точки. Именно он ввел в научный оборот понятие основного закона механики и сформулировал систему законов механики, состоящую из трех законов, названных впоследствии его именем.
Принципиальной заслугой Ньютона явилось открытие закона всемирного тяготения, определяющего величину действующей силы для случая гравитационного взаимодействия. Ньютон также сумел связать воедино законы движения с законами сохранения энергии. Позже на этой основе были открыты законы сохранения живых сил.
Вместе с процессом становления фундаментальных понятий и принципов классической механики складывается и общая структура ее теоретической системы. Постепенно оформляется ее теоретическое ядро, дополняемое правилами построения конструктивных теоретических моделей. На этой основе стали возникать специфические частные теории, на пример, теория движения твердого тела, теория движения газов (аэродинамика) или теория движения жидкостей (гидродинамика). Здесь уже развитое теоретическое физическое знание представало как многоуровневое системное образование, создаваемое по четким законам конструктивного теоретического моделирования.
Как видим, классическая наука представляла собой первую историческую форму развернутого «чисто научного» знания, сознательно отмежевывающегося, отделяющего себя от «несовершенных форм» знания ненаучного и стремящегося к завершенному знанию о мире и царящих в нем законах на основе механической формы движения.