Тема 2.3.1 Пластический и энергетический обмен
Веществ в клетке
Совокупность реакций биологического синтеза называется пластическим обменом или анаболизмом. Из простых веществ поступающих в клетку извне, образуются вещества, подобные веществам клетки, т.е. происходит ассимиляция. Наиболее активно пластический обмен происходит в процессе роста организма. Наиболее важные процессы анаболизма, имеющие огромное значение для жизни на Земле – это фотосинтез и синтез белка.
Биосинтез белка.
Как уже отмечалось, все многообразие свойств белков в конечном счёте определяется их первичной структурой, т.е. последовательностью аминокислот. Каждой аминокислоте в полипептидной цепочке соответствует комбинация из трех последовательно расположенных нуклеотидов – триплет. Так, аминокислоте цистеину соответствует триплет АЦА, валину – ЦАА, лизину – ТТТ и т.д. Таким образом, определенные сочетания нуклеотидов и последовательность их расположения в молекуле ДНК является генетическим кодом, несущем информацию о структуре белка.
Свойства генетического кода.
Код включает все возможные сочетания трёх азотистых оснований. Таких сочетаний может быть 43 = 64, в то время как кодируется только 20 аминокислот. В результате некоторые аминокислоты кодируются несколькими триплетами – кодонами. Эта избыточность кода имеет большое значение для повышения надежности передачи генетической информации. Например, аминокислоте агрипину могут соответствовать триплеты ГЦА, ГЦГ, ГЦТ, ГЦЦ и т.д. Понятно, что случайная замена третьего нуклеотида в этих триплетах никак не отразится на структуре синтезируемого белка. В каждой молекуле ДНК, состоящей из миллионов нуклеотидных пар, записана информация о последовательности аминокислот в сотнях различных белков, поэтому существуют триплеты, служащие «знаками препинания» и разделяющие участки, несущие информацию о разных белках. Участок молекулы ДНК несущий информацию о структуре одной белковой молекулы называют геном. Одно из основных свойств кода – его специфичность. Нет случаев, когда один и тот же триплет соответствовал бы более чем одной аминокислоте. Код универсален для всех живых организмов и никогда не перекрывается т.е. кодоны транслируются (передаются) в виде информации – триплета (кодона) и-РНК всегда целиком. При считывании информации с молекулы ДНК невозможно использование азотистого основания одного триплета в комбинации с основаниями другого триплета. Для того, чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа: транскрипцию и трансляцию.
Транскрипция (переписывание) генетической информации происходит путём синтеза на одной из цепей молекулы ДНК одноцепочечной молекулы РНК, последовательность нуклеотидов которой точно соответствует последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК. Существуют специальные механизмы «узнавания» начальной точки синтеза, выбора цепи ДНК, с которой считывается информация, а так же механизм завершения процесса. Так образуются и-РНК т.е. информация из последовательности кодонов ДНК переводится в последовательность кодонов и-РНК.
Трансляция.
Следующий этап биосинтеза – перевод последовательности нуклеотидов в молекуле и-РНК в последовательность аминокислот. Этот процесс трансляцией (передача). У эукариот и-РНК сначала должна быть доставлена через ядерную оболочку в цитоплазму. Перенос осуществляется специальными белками, образующими комплекс с молекулой РНК. В цитоплазме на один из концов и-РНК вступает рибосома и начинает синтез полипептида. Рибосома перемещается по молекуле и-РНК прерывисто, триплет за триплетом, делая каждый из них доступным для контакта с т-РНК. Одна рибосома способна синтезировать полную полипептидную цепь и не нуждается в присутствии других рибосом. Однако в зависимости от длины молекулы и-РНК к ней может присоединяться до 100 рибосом. Такой комплекс – полирибосома. После завершения синтеза полипептидная цепь отделяется от матрицы – молекулы и-РНК, сворачивается в спираль, а затем приобретает третичную структуру характерную для данного белка. Молекула и-РНК может использоваться для синтеза полипептида многократно. Процесс биосинтеза чрезвычайно сложен, связанный с участием ферментов и затратой энергии.
Энергетический обмен
Процессом, противоположным биосинтезу является диссимиляция (катаболизм) – совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для биосинтеза. Поэтому диссимиляцию называют энергетическим обменом клетки. Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. При расщеплении глюкозы энергия выделяется поэтапно при участии ферментов:
С6Н12О6 + 6О2 → 6Н2О + 6СО2 + Q
АТФ – аденозинтрифосфорная кислота.
Часть энергии, освобождаемой из питательных веществ, рассеивается в виде тепла, а часть накапливается в богатых энергией фосфатных связях АТФ. АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу, перенос веществ через мембраны и т.д. Молекула АТФ по химической организации сходна с нуклеотидом, она состоит из азотистого основания – аденина, рибозы и трех остатков фосфорной кислоты:
Азотистое основание
О О О
|| || ||
ОН + Н2О Р – Р – Р –
| | |
ОН ОН ОН
Молекула с тремя остатками фосфорной кислоты энергоёмка. Благодаря богатым энергией связям в молекуле АТФ клетка накапливает большое количество энергии и расходует по мере необходимости. Синтез АТФ осуществляется в митохондриях, откуда она поступает в разные участки клетки.