Задачи и упражнения по теме КДС

1.Известно бактерицидное действие серебра. Покажите строение коллоидной частицы золя серебра. Стабилизатор – нитрат серебра.

2.Постройте мицеллу СаС2О4 с положительно заряженной гранулой. Объясните на этом примере механизм стабилизирующего действия электролита.

3.При каких условиях можно получить коллоид сульфида меди с положительно заряженной гранулой? Опишите механизм коагулирующего действия.

4.Объясните, почему при потере защитной функции белков возможно образование камней в почках. Рассмотрите это явление на примере оксалата кальция. Нарисуйте схематично исходную частицу оксалата кальция в растворе.

5.Рассмотрите примеры получения КДС методом химической конденсации. Напишите мицеллы, укажите стабилизаторы. За счет чего коллоиды сохраняют устойчивость? Примеры: коллоиды золота, серы, сульфата бария, гидроксида хрома(Ш), оксида олова(IV).

6.Золь иодида серебра получен при сливании 20 мл 0,01М раствора KI и 15 мл 0,01М раствора AgNO3. Напишите формулу мицеллы образовавшегося коллоида и определите направление движения его частиц при электрофорезе.

7.Свежеосажденный гидроксид алюминия обработали раствором соляной кислоты, недостаточным для полного растворения осадка. При этом образуется коллоид А1(ОН)3. Напишите формулу мицеллы, если в электрическом поле частицы коллоида А1(ОН)3 перемещаются к катоду (-). Укажите метод получения КДС.

8.При длительном стоянии сероводородной воды на воздухе образуется коллоидная сера. Напишите формулу мицеллы золя серы и определите знак заряда гранулы. К какому методы относится образование данного коллоида?

9.Золь серы получен добавлением 5 мл спиртового раствора серы к 10 мл дистиллированной воды. Каким методом он получен? Чем объясняется, что в проходящем свете золь красно-оранжевый, а в отраженном – голубой?

10.При пропускании избытка сероводорода в подкисленный раствор соли мышьяка(Ш) получен золь сульфида мышьяка(Ш). Напишите мицеллу и определите знак заряда гранулы.

11.Для очистки водопроводной воды от взвешенных частиц глины и песка добавляют небольшое количество Аl2(SO4)3. Почему в этом случае происходит быстрое оседание взвешенных частиц? Ответ обоснуйте.

12.К 5 мл золя Fe(OH)3 до начала коагуляции надо добавить один из следующих растворов: 4 мл хлорида калия с концентрацией 3 моль/л, 0,5 мл сульфата калия с концентрацией 0,01 моль/л, 3 мл Na3PO4 с концентрацией 0,001 моль/л. Вычислите порог коагуляции этих электролитов. Во сколько раз коагулирующее действие их отличается друг от друга?

13.Какой объем 0,01М раствора K2Cr2O7 надо добавить к 1 л золя гидроксида алюминия, чтобы вызвать его коагуляцию? Порог коагуляции 0,63 ммоль/л.

14.Назовите три метода получения коллоида Fe(OH)3, приведите уравнения реакций, напишите мицеллы. Как экспериментально определить знак заряда гранулы?

15.При каких условиях отсутствует направленное движение частиц КДС в электрическом поле? В каком направлении будут перемещаться частицы коллоидов Ag2Cr2O7, Bi(OH)3? Приведите строение мицелл.

16.Чем отличается адсорбционная пептизация от растворения?

17.Частицы коллоидного раствора сульфата кальция, полученного смешением равных объемов СаС12 и Na2SO4, перемещаются в электрическом поле к катоду. Одинаковы ли концентрации исходных растворов? Покажите строение коллоидных частиц.

18.Коллоидный раствор сульфида свинца получен по реакции Pb(NO3)2 + Na2S →. Пороги коагуляции электролитов для коллоидного раствора, ммоль/л: КС1 – 50; А1С13 – 0,093; MgCl2 – 0,717. Укажите стабилизатор при получении коллоидного раствора.

19.Известно, что для лекарственных препаратов очень важна их совместимость, поскольку при одновременном их введении могут наблюдаться явления синергизма, антагонизма и реже аддитивности. Какое явление может иметь место при одновременном добавлении растворов FeCl2 и KCN к коллоидному раствору а) с отрицательно; б) с положительно заряженной гранулой? Дайте пояснения.

ГРУБОДИСПЕРСНЫЕ СИСТЕМЫ

По теме «Грубодисперсные системы» студент должен знать классификацию ГДС; методы получения и стабилизаторы; уметь показывать строение частиц дисперсной фазы; оценивать устойчивость ГДС; владеть навыками приготовления суспензий, эмульсий различного типа.

Вопросы для подготовки

1. Общая характеристика.

2. Классификация ГДС: эмульсии, суспензии, аэрозоли, пены.

3. Эмульсии: методы получения, свойства. Типы эмульсий, механизм действия эмульгатора. Обращение фаз эмульсий. Применение эмульсий в медицине.

4. Суспензии. Виды суспензий. Строение частиц ДФ. Методы получения. Свойства. Применение в медицине.

5. Аэрозоли, классификация. Кинетическая и агрегативная устойчивость. Аэрозоли как причина возникновения некоторых заболеваний и как лекарственные формы.

РАСТВОРЫ НМС

По теме «Растворы НМС» студент должен знать характеристику молекулярно- и ионнодисперсных систем; устойчивость и методы осаждения НМС из растворов; уметь показывать строение частиц дисперсной фазы; владеть методами приготовления растворов НМС и методами их разрушения путем высаливания и замены растворителя.

Вопросы для подготовки

1. Характеристика, получение растворов НМС.

2. Строение частиц ДФ в растворе.

3. Факторы устойчивости. Способы разрушения НМС: высаливание; метод замены растворителя.

Наши рекомендации