Удвоение и дивергенция генов в филогенезе
Филогенез характеризуется усложнением генома, которое проявляется в увеличении количества и разнообразия генов и, соответственно, белков. Геном кишечной палочки содержит 3,8-106 нуклеотидных пар. Средний белок построен примерно из 300 аминокислотных остатков; следовательно, размер среднего гена — около 900 нуклеотидных пар. Таким образом, в клетке кишечной палочки ДНК хватило бы для кодирования примерно 4000 белков. Однако часть ДНК не входит в состав структурных генов, а выполняет регуляторные функции в оперонах, поэтому число разных белков в клетке кишечной палочки меньше 4000.
ДНК гаплоидного набора хромосом клетки человека содержит 2,3-109 нуклеотидных пар, т. е. на три порядка больше, чем Е. coli. Такого количества ДНК хватило бы для кодирования 2,5 млн. белков. В клетках человека (и других эукариот) доля ДНК, занятая структурными генами, значительно меньше, чем у прокариот: по примерным оценкам, в организме человека синтезируется 50—200 тыс. разных белков (в 20—60 раз больше, чем у Е. coli). В это число не входят иммуноглобулины, разнообразие которых обеспечивается механизмами, отличающимися от синтеза всех других белков.
Усложнение генома при филогенезе достигается в результате двух процессов: удвоения генов и их независимых мутаций.
В результате удвоения возникают две копии гена в одной молекуле ДНК (в одной хромосоме), т. е. в геноме образуется дополнительный локус. Многократное удвоение приводит к образованию большего количества копий. Многие гены человека в гаплоидном наборе представлены двумя или большим числом копий. В некоторых (редких) случаях число копий значительно; например, имеется до 1000 копий гистоновых генов, которые в молекуле ДНК расположены последовательно (тандемно).
При наличии двух копий гена мутации одной из них, ведущие к синтезу «неправильного» белка, не будут гибельными для клетки, поскольку другая копия обеспечит синтез «правильного» белка. Следовательно, мутантный ген не будет элиминироваться естественным отбором, и через ряд поколений в результате накопления мутаций кодируемый им мутантный белок может оказаться полезным для организма. Это означает появление нового гена. Такие родственные гены сходны по последовательности кодонов, а соответствующие белки — по последовательности аминокислот. Например, подобное семейство белков составляют миоглобин и протомеры гемоглобинов. В организме взрослого человека имеется три основные формы гемоглобинов: НЬА (96%), HbF (2%) и НЬА2 (2%). Все они тетрамеры; формула НЬА — 2а2р; в молекулах HbF и НЬА2 вместо Р-протомеров содержатся у- и δ-протомеры: HbF — 2а2у, НЬА2 – 2а2δ. Первичная структура всех протомеров сходна во многих частях пептидной цепи (рис. 56). Учитывая число различий в первичной структуре протомеров, а также сравнивая первичные структуры гемоглобинов разных животных, можно считать, что миоглобин и протомеры гемоглобинов возникли из общего предшественника в результате удвоения генов и независимых мутаций.
Основная функция всех гемоглобинов одинакова, поэтому их можно рассматривать как изобелки. Следовательно, удвоение генов и последующие независимые мутации копий – это один из механизмов образования изобелков, в том числе изоферментов. Дальнейшее накопление мутаций в родственных генах ведет к еще большей дивергенции (расхождению) свойств соответствующих белков. Например, семейство родственных белков составляет группа протеолитических ферментов, включающая трипсин, химотрипсин, эластазу, тромбин, плазмин. Эти ферменты различаются по субстратной специфичности и роли, которую они выполняют в организме, и название «изоферменты» к ним уже вряд ли применимо. Продолжающееся накопление мутаций в конечном счете приводит к тому, что гены, возникшие в результате удвоения их общего предшественника, утрачивают признаки родства, а кодируемые ими белки имеют совершенно различные первичную структуру и функцию. Этот путь и ведет к увеличению количества и разнообразия генов при филогенезе. Удвоение генов и их дивергенция путем независимых мутаций составляют механизм дихотомической эволюции генов и соответствующих белков.
Организм должен реплицировать ДНК с высокой точностью, чтобы поддерживать свою генетическую идентичность. На это направлено действие механизмов, обеспечивающих точность репликации, и действие репарирующих систем, устраняющих повреждения. И все же он должен допускать некоторое количество ошибок при репликации ДНК или репарации повреждений, чтобы была возможна эволюция. Мутации — это первичная причина появления разнообразия фенотипов, необходимого для действия естественного отбора. Другая причина — вторичная — это рекомбинации мутантных генов при половом размножении.
Полиморфизм белков.
У разных особей возникают варианты (мутации) разных генов или варианты одного и того же гена. Варианты генов, образующиеся у отдельных особей, могут постепенно распространяться в популяции в результате наследования, если они не детальны. Так формируется генотипическая неоднородность популяции, которая ведет и к фенотипической неоднородности. На молекулярном уровне наиболее изучен как следствие генотипической гетерогенности полиморфизм белков — существование разных форм белка, выполняющего одинаковые или очень сходные функции (изобелки). Чаще всего изучают полиморфизм ферментов (т. е. наличие изоферментов), поскольку их гораздо легче обнаружить, чем другие белки, по катализируемой ими реакции.
Гемоглобин.Гемоглобины А(2а2β), F(2a2y), Аг(2а2δ) есть в эритроцитах почти всех людей. Гены этих белков не аллельны — они занимают разные локусы. Эти гены возникли в результате дупликации гена-предшественника и мутационной дивергенции копий. Но в крови некоторых людей обнаруживаются (обычно редко) другие гемоглобины, являющиеся продуктами аллельных генов. В частности, известно много аллельных вариантов гемоглобина А. Один из вариантов — это HbS, который отличается от НbА лишь одной аминокислотой в шестом положении β-цепи (β6 Glu-→>VaI).
По аллелям НbА и HbS все люди делятся на три группы с генотипами АА, AS и SS. У людей первой группы эритроциты содержат НЬА, у второй—НЬА и HbS, у третьей—HbS. Распространенность аллеля S (т. е. суммы людей с генотипами AS и SS) географически неравномерна: у некоторых народностей Азии и Африки—до 35%; у европейцев встречается редко.
Существует еще вариант гемоглобина: HbC (β6 Glu→Lys). По этой паре аллелей существуют генотипы АА, АС и СС. Теперь всех людей можно разделить на пять генотипически и фенотипически разных групп: АА, AS, SS, АС и СС. Известно около 300 разных вариантов НbА. Следовательно, по всем аллелям гемоглобина А люди образуют около 600 генотипически различающихся групп (если не считать очень редко встречающиеся гетерозиготы по вариантам, например SC).
Трансплантационная несовместимость.От полиморфизма белков в сочетании с иммунологическими реакциями зависит трансплантационная несовместимость. Клетки трансплантата содержат аллельные варианты белков, отличающиеся от вариантов реципиента. Эти белки донора являются антигенами для организма реципиента и приводят к развитию реакции клеточного иммунитета, в результате которой трансплантированная ткань отторгается. Роль антигенов могут выполнять также полисахариды или другие вещества, структура которых у донора и реципиента различна. Однако и в этом случае первичная причина различий—полиморфизм белков, поскольку все вещества в организме синтезируются при участии ферментов, т. е. белков. Решающую роль в отторжении трансплантата играют антигены (белки и полисахариды), расположенные на наружной поверхности плазматической мембраны клеток.
Отторжение трансплантата в наибольшей мере определяется главным комплексом тканевой совместимости — так называют участок генома, содержащий небольшое число структурных генов (не меньше трех), и белки, кодируемые этими генами. Белки главного комплекса тканевой совместимости представляют собой гликопротеины; они являются интегральными белками плазматической мембраны клеток. Гены главного комплекса тканевой совместимости отличаются необычайно высоким полиморфизмом: число комбинаций разных аллелей по генам этой системы достигает нескольких миллионов. Это самая полиморфная система человека из всех известных в настоящее время. Высокая степень полиморфизма генов обеспечивает столь же высокую степень индивидуальности по белкам, которые кодируются этими генами. Подбор донора и реципиента, сходных по антигенным свойствам белков главного комплекса совместимости, значительно повышает вероятность приживления трансплантата. Этот комплекс в настоящее время интенсивно изучается с целью преодолеть трансплантационную несовместимость — главное препятствие на пути трансплантологии.
Концепция иммунологического надзора.Разумеется, в ходе биологической эволюции такая реакция на чужеродные клетки выработалась не для отторжения трансплантата. По-видимому, действительная биологическая роль клеточного иммунитета, помимо защиты от вирусной и некоторых других инфекций, состоит в устранении измененных клеток, которые возникают в результате соматических мутаций. Общее число клеток в организме человека громадно—порядка 1018, поэтому и число мутантных клеток тоже велико: в каждый момент оно может измеряться биллионами клеток. Размножение мутантных клеток, неспособных выполнять нормальные функции, могло бы оказаться вредным для организма. На них и направлено действие клеточного иммунитета. Таким способом осуществляется иммунологический надзор за постоянством клеточного состава организма. Иммунологический надзор служит как бы второй линией обороны против появления мутантных клеток (первую линию обороны составляют системы репарации ДНК).
В каждой клетке организма происходит непрерывный распад ее структурно-функциональных компонентов, и за счет этого образуются аминокислоты, моносахариды, жирные кислоты, нуклеотиды и другие вещества. Они смешиваются с такими же веществами, образующимися из пищи, составляя общий фонд метаболитов организма. Этот фонд расходуется по двум направлениям: часть используется для возобновления распавшихся структурно-функциональных компонентов клетки; другая часть превращается в конечные продукты обмена веществ, которые выводятся из организма. При распаде веществ до конечных продуктов обмена освобождается энергия, у взрослого человека 8000—12 000 кДж (2000—3000 ккал) в сутки. Эта энергия используется клетками организма для совершения разного рода работы, а также для поддержания температуры тела на постоянном уровне.
Между содержанием разных веществ в организме и величиной их суточного потребления нет соответствия. Например, для белков отношение содержание/потребление равно примерно 180, а для углеводов оно менее 2, то есть различие по этому коэффициенту между белками и углеводами почти стократное. Это связано с тем, что подавляющая часть пищевых углеводов используется именно как источник энергии и распадается до конечных продуктов обмена, минуя стадию включения в структурно-функциональные компоненты клетки. То же в значительной мере относится и к жирам.
Основную массу элементов, из которых построены пищевые вещества, а также и тело человека, составляют углерод, водород, кислород и азот. Эти же элементы входят в состав главных конечных продуктов обмена веществ — С02, Н20 и мочевины H2N — СО — NH2. В форме Н20 выводится водород органических веществ, причем организм выделяет воды больше, чем потребляет (см. табл. 24): примерно 400 г воды образуется за сутки в организме из водорода органических веществ и кислорода вдыхаемого воздуха (метаболическая вода). В форме С02 выводятся углерод и кислород органических веществ, а в форме мочевины — азот.
Человек выделяет с мочой, калом, потом, выдыхаемым воздухом много и других веществ, но в незначительных количествах, так что их вклад в общий баланс обмена веществами между организмом и средой невелик. Однако надо отметить, что физиологическое значение выделения таких веществ может быть существенным. Например, нарушение выделения продуктов распада гема или продуктов метаболизма чужеродных соединений, в том числе лекарств, может быть причиной тяжелых нарушений обмена веществ и функций организма.
Обучающие задачи:
1. В процессе гликолиза образовалось 42 молекулы пировиноградной кислоты. Какое количество молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при полном окислении?
Ответ: При гликолизе одна молекула глюкозы расщепляется с образованием 2-ух молекул пировиноградной кислоты (ПВК), следовательно, гликолизу подверглось: 42/2=21 молекула глюкозы.
При полном окислении одной молекулы глюкозы (бескислородный и кислородный этапы) образуется 38 молекул АТФ.
При окислении 21 молекулы образуется: 21*38=798 молекул АТФ
2. Одно из генетических нарушений аминокислотного обмена.В больницу доставлен двухлетний ребенок. По словам матери, он страдает частыми рвотами. Рвоты случаются главным образом после приема пищи. Ребенок отстает в весе и физическом развитии. Волосы темные, но попадаются седые пряди. Проба мочи после добавления FeCl3 приобрела зеленый цвет, что указывает на присутствие в моче фенилпировиноградной кислоты. Количественный анализ мочи дал следующие результаты:
Вещество | Содержание | в моче, ммоль/л |
у больного | в норме | |
Фенилаланин Фенилпируват Фениллактат | 7,0 4,8 10,3 | 0,01 |
Какой фермент, по-видимому, неактивен? Почему в моче в больших количествах появляется фенилаланин? Что служит источником фенилпирувата и фениллактата? Почему этот путь (отсутствующий у здоровых людей) начинает функционировать, когда концентрация фенилаланина повышается?
3. Нуклеотиды - плохой источник энергии.У большинства организмов нуклеотиды не используются как топливо, т. е. как источник энергии. Какими наблюдениями подкрепляется этот вывод? Почему нуклеотиды являются относительно плохим источником энергии у млекопитающих?
4. Причина мутации, приводящей к образованию серповидных эритроцитов.В гемоглобине серповидных эритроцитов в 6-м положении β-глобиновой цепи вместо глутаминовой кислоты (присутствующей в нормальном гемоглобине А) обнаружен валин. Какое изменение, произошедшее в кодоне для глутаминовой кислоты, привело к ее замене на валин?
5. Митохондрии бурого жира.У новорожденных детей в области шеи и в верхней части спины имеется особая жировая ткань, которая у взрослых практически отсутствует, так называемый бурый жир. Бурую окраску придают этой ткани митохондрии, которых в ней чрезвычайно много. У некоторых животных, впадающих в зимнюю спячку или приспособленных к обитанию в холодных местностях, тоже имеется бурый жир. В то время как в митохондриях печени при окислении NADH на каждый атом поглощенного кислорода образуются обычно три молекулы АТР, в митохондриях бурого жира выход АТР на один атом поглощенного кислорода составляет менее одной молекулы.
а) Какая физиологическая функция может определяться этим низким отношением Р/О в буром жире новорожденных?
б) Укажите возможные механизмы, которые могли бы определять столь низкое отношение Р/О, характерное для митохондрий бурого жира
Тренирующие задачи:
1. Ферментная недостаточность при углеводном обмене. Ниже описаны четыре клинических случая. Назовите для каждого случая дефектный фермент и дайте соответствующие рекомендации, выбрав их из приложенного перечня. Укажите, на чем основано ваше решение. Ответьте на вопросы, приведенные в описании каждого из четырех случаев.
Случай 1. Больной не переносит молока. Как только он его выпьет, у него сразу же начинаются рвота и понос. Проведен тест на толерантность к лактозе. (Испытуемый получает при этом определенное количество лактозы, после чего у него через соответствующие промежутки времени измеряют концентрацию глюкозы и галактозы в плазме крови. В норме уровень этих Сахаров возрастает до максимума примерно через час, а затем снижается.) У больного в этом тесте концентрация глюкозы и галактозы в крови не возрастала, а оставалась постоянной. Объясните, почему у здоровых людей концентрация глюкозы и галактозы в крови сначала растет, а затем снижается. Почему у больного таких изменений не происходит?
Случай 2. У больного с умственной отсталостью молоко вызывает рвоту и понос. В крови концентрация глюкозы низка, а концентрация редуцирующих Сахаров значительно выше нормы. В моче обнаруживается галактоза. Чем объясняется высокая концентрация редуцирующих Сахаров в крови? Почему в моче обнаруживается галактоза?
Случай 3. Больной страдает от судорог в мышцах при напряженной физической работе, но в остальном чувствует себя здоровым. Биопсия мышечной ткани выявила, что концентрация гликогена в мышцах этого больного гораздо выше нормы. Почему накапливается гликоген?
Случай 4. Больная вялая, апатичная. Печень увеличена; при биопсии печени обнаружен большой избыток гликогена. Концентрация глюкозы в крови ниже нормы. В чем причина пониженной концентрации глюкозы в крови этой больной?
2. Потребление АТР корневыми клубеньками бобовых.Бактерии, обитающие в корневых клубеньках растения гороха, потребляют свыше 20% всего АТР, образуемого этим растением. Назовите причину, которой можно было бы объяснить, почему эти бактерии потребляют так много АТР.
3. Нуклеотидная последовательность комплементарных цепей ДНК. Напишите нуклео-тидную последовательность одной цепи двухцепочечной ДНК, другая цепь которой имеет последовательность (5') ATGCCGTATGCATTC (3').
4. Трансляция мРНК.Предскажите аминокислотную последовательность пептидов, синтезируемых в рибосомах в присутствии следующих матриц, считая, что считывание начинается с первого триплета на левом конце.
а) GGUCAGUCGCUCCUGAUU
б) UUGGAUGCGCCAUAAUUUGCU
в) CAUGAUGCCUGUUGCUAC
г) AUGGACGAA
5. Можно ли, исходя из аминокислотной последовательности полипептида, предсказать нуклеотидную последовательность его мРНК. Данная нуклеотидная последовательность в мРНК кодирует при строго определенной рамке считывания одну и только одну последовательность аминокислот в полипептиде. Можно ли, исходя из данной последовательности аминокислотных остатков в белке, например в цитохроме с, предсказать нуклеотидную последовательность единственной мРНК, кодирующей этот белок? Обоснуйте ваш ответ.
6. Кодирование полипептида двухцепочечной ДНК. Транскрибируемая цепь двухцепочечной ДНК содержит последовательность
(5’) CTTAACACCCCTGACTTCGCGCCGTCG
а) Какая последовательность мРНК может транскрибироваться с этой цепи?
б) Какая аминокислотная последовательность могла бы кодироваться этой последовательностью при считывании с 5'-конца?
в) Предположим, что другая цепь этой ДНК тоже транскрибируется, а полученная мРНК транслируется. Совпадает ли полученная аминокислотная последовательность с последовательностью, которую вы привели в ответе на вопрос б)? Объясните биологическое значение ваших ответов на вопросы б) и в).
7. Синтетические мРНК.Каким образом вы синтезировали бы полирибонуклеотид, который можно было бы использовать в качестве мРНК, кодирующей преимущественно остатки фенилаланина и небольшое число остатков лейцина и серина? Какие еще аминокислоты, но в гораздо меньших количествах, колировались бы таким полирибонуклеотидом ?
Контролирующие задачи:
1. ДНК человека.Чему равен вес молекулы двухцепочечной ДНК (в граммах) протяженностью от Земли до Луны ( ~ 384000 км)? Каждая тысяча нуклеотидных пар двойной спирали ДНК весит 1 • 10 -18 г. В одном километре содержится 1 • 1012 нм, а размер одной пары оснований составляет 0,34 нм. Для сравнения интересно отметить, что в организме человека содержится ~0,5 г ДНК.
2. Какова длина гена рибонуклеазы?Какое минимальное число нуклеотидных пар содержится в гене, кодирующем панкреатическую рибонуклеазу (124 аминокислоты)? Почему число нуклеотидных пар может оказаться гораздо большим, чем в вашем ответе? С чем связана такая неопределенность?
3. Упаковка ДНК в эукариотических клетках. Сравните длину ДНК в одной нуклеосоме с диаметром нуклеосомы, который равен 10-11 нм. Затем сравните длину всей ДНК в клетке человека с диаметром клеточного ядра - около 2 мкм. В какой из структур ДНК уложена более компактно?
4. Нуклеотидная последовательность ДНК.Почему при секвенировании ДНК химическим методом молекула ДНК должна быть меченой только по одному концу, а не равномерно?
5. РНК-содержащие вирусы: могут ли гены состоять из РНК? В составе РНК-содержащих вирусов Е. coli ДНК нет, в них присутствует лишь РНК, которая выполняет роль вирусной хромосомы. Это означает, что в таких вирусах гены состоят из РНК, а не из ДНК. Опровергает ли это центральную догму молекулярной генетики? Обоснуйте свой ответ.
6. Сколько разных мРНК может кодировать одну аминокислотную последовательность.Напишите все возможные последовательности мРНК, которые способны кодировать простой трипептид Leu-Met-Tyr. Ответив на этот вопрос, вы получите некоторое представление о числе разных мРНК, которые могут кодировать один полипептид.
7. Как влияет изменение одного основания в мРНК на аминокислотную последовательность полипептида.Очень важные доказательства, подтверждающие правильность расшифрованного генетического кода, были получены при изучении природы мутаций, приводящих к замене одного остатка в аминокислотной последовательности белка. Какая из перечисленных ниже замен одной аминокислоты на другую согласуется с генетическим кодом? Какая из замен не может быть результатом изменения одного-единственного основания в мРНК? Почему?
а) Phe → Leu
б) Lys → Ala
в) Ala → Thr
г) Phe → Lys
д) Ilе → Leu
е) His → Glu
ж) Pro → Ser