Устойчивость микроорганизмов к антибиотикам: согласно экспериментальным первоисточникам – мутации есть, но новых генов не возникает
Об этом однозначно утверждается в трудах креационистов (см., например, [3, 8, 9]). В эволюционных же пособиях вопрос несколько размыт: про какие-либо механизмы повышения устойчивости, про то, что они могут быть не обусловленными образованием новых генов, ничего не указывается [1, 2].
Где экспериментальная истина?
Автор представленного вам труда ознакомился с рефератами научных обзоров по всему миру вплоть до начала 2004 г. (на английском языке; часто весьма полные; международная поисковая система Интернета по биологии и медицине Medline). Это – работы, посвященные развитию устойчивости к антибиотикам у бактерий. Таких обзоров оказалось много: порядка 150-200. Понятно, что ниже мы будем приводить только выборочные ссылки.
Помимо прочего, был осуществлен поиск по текстам всех рефератов на сочетание ключевых слов «New gene», «New genes» и de novo («новый ген», «новые гены», «образование заново»). Обнаружилось, что специалисты-генетики, молекулярные биологи, бактериологи и прочие, писавшие обзоры конкретных экспериментальных исследований, даже мысли не допускают о возникновении новых генов при приобретении устойчивости к антибиотикам (типичные примеры: [12-29]; извиняемся за «пачку» ссылок: они будут использованы ниже).
Вопрос об устойчивости микроорганизмов к антибиотикам имеет большую практическую значимость. Например, микобактерии туберкулеза, быстро мутируя, столь же быстро становятся резистентными (устойчивыми) к наиболее распространенным препаратам. И приходится выбирать для лечения новые (имеется целый ряд противотуберкулезных соединений; их правильное использование – это целое искусство терапии).
Исследовались биохимические механизмы устойчивости к антибиотикам, связанные, конечно, с мутациями и ДНК, но не с образованием новых генов. Главное же оказалось в том, что путем мутаций повреждаются те или иные гены, или же гены передаются от одной бактерии (даже иного вида) другой.
Часто встречались термины «эволюция» и рассуждения об «эволюционном приобретении резистентности», в том числе и о «молекулярной эволюции», однако и в этих обзорах речь не идет ни о каком образовании новых генов и возникновении новой генной информации [14, 16-18, 21, 22, 28]. Механизмы эволюционного приспособления оказались связанными все с тем же: либо с изменениями старых генов, либо с приобретением новых, уже имеющихся, из разных источников (внешних или внутренних). Понятно, в каком контексте употребляется термин «эволюция» в указанных экспериментальных работах: в микроэволюционном. Однако для пишущих учебные пособия, если они «по верхам» ознакомятся только с заголовками рассмотренных нами научных обзоров, может возникнуть соблазн употребить те обзоры для подкрепления совсем других эволюционных построений.
А механизмы приобретения микроорганизмами резистентности к антибиотикам следующие:
1. Инактивация препаратов путем стимуляции специфических ферментов (бета-лактамаз, ацетилаз, аденилаз и фосфорилаз) [12, 13, 17, 24, 26, 27].
2. Снижение количества участков связывания антибиотиков при изменении характеристик мембран (например, снижение синтеза специальных гликопротеинов, входящих в их структуру) [13, 27]. Изменение проницаемости мембраны для антибиотиков путем других повреждающих мутаций [26].
3. Изменение характеристик белков – мишеней антибиотиков так, что последние становятся не способными присоединяться к ним [13, 16, 17, 21, 23, 24, 26, 27, 29].
4. Мутации, которые приводят к выключению генов, или же к инактивации соответствующих кодируемых белков-ферментов, отвечающих за метаболизм («превращение») антибиотиков до токсичных продуктов [13, 21, 23].
5. Стимуляция системы выброса препаратов из клетки захватом извне специальных генов [22, 24-26].
6. Приобретение от других микроорганизмов генов (в плазмидах и транспозонах), которые кодируют белки устойчивости к антибиотикам [14, 16-18, 21, 22, 27, 28, 29]. Некоторые виды бактерий сами способны вырабатывать такие соединения, и у них, понятно, существует мощная система защиты. Другие бактерии могут приобретать генный материал от подобных апнтибиотикоустойчивых микроорганизмов [12].
Наибольшее значение придается именно передаче уже имеющейся генной информации: через инсерции (вставки) в пределах одной клетки в новые места генома плазмид (фрагментов ДНК с теми или иными генами; часто – генами резистентности), встраивания в геном мобильных элементов или транспозонов (это, грубо говоря, внехромосомные образования, во многом аналогичные плазмидам), а также передаче таких элементов от клетки к клетке, в том числе и между бактериями разных видов [14, 19, 21, 28].
Однако помимо рассмотренного генного транспорта, важен и мутационный механизм микроэволюционного приобретения устойчивости к антибиотикам. Например, многие препараты работают путем нарушения у бактерий синтеза белка, связываясь с рибосомами. Но если в результате точковой мутации повреждается специфический ген, кодирующий определенный белок рибосомы, то такая рибосома перестает, помимо прочих нарушений, связывать антибиотик и последний перестает действовать [15, 30]. Бактерия с подобной рибосомой на фоне антибиотика устойчива, однако рибосома-то – дефектна. И бактерия, поэтому, на самом деле значительно слабее в широком адаптационном плане, чем исходная, без мутации. Можно ли такие мутации «прогрессивными изменениями» назвать?
Другой механизм: повредился ген, кодирующий фермент, отвечающий за соединение в структуре клеточной мембраны гликопротеинов между собой, и перестала такая мембрана быть проницаемой для противобактериального препарата [31]. Но вновь: мембрана-то – поврежденная, наверняка она стала малопроницаемой и для других, нужных веществ.
Или еще: у многих бактерий даже в норме имеются ферменты, которые, например, антибиотики из группы аминогликозидов расщеплять способны. Только очень слабо их гены функционируют. Однако если малая мутация повредила несколько последовательностей в регуляторном участке такого гена, то он начинает работать активнее. В результате больше фермента вырабатывается, который антибиотик расщепляет. Здесь мы снова с дефектным по его регуляторному участку геном дело имеем [32].
И все другие мутационные механизмы – подобного же рода, связанные с различными дефектами.
На этом пока остановимся: ясно, что ни при мутациях, вроде перечисленных, ни при передаче генов через плазмиды, транспозоны и пр., никакой принципиально новой генной информации и новых генов, действительно, не появляется.
Как об этом в трудах креационных исследователей вкратце и говорилось [3, 8, 9], хотя, полагаю, те исследователи вряд ли, подобно нам, множество доступных обзоров экспериментальных первоисточников изучили. Но истинность их утверждений, как видим, подтвердилась.
Далее. На одном из эволюционных сайтов 2000 г. представлена критика взглядов креационистов на невозможность мутационного обоснования макроэволюции. Приведен пример с бактериями, которые путем адаптационных изменений приобрели способность расщеплять нейлон, причем отмечается, что, поскольку нейлон появился только в 1937 г., то указанный факт – яркий пример возникновения совершенно нового фермента (подразумевается – и признака), и что это как бы проявление такого феномена, для которого, согласно взглядам креационистов, необходимо исключительно Божественное вмешательство («These are documented examples of the appearance of novel adaptations, something that creationists claim only God can produce»). Раздел работы называется громко: «The nylon bug» (по смыслу, полагаю, что-то вроде «нейлоновой конфузии») [33]. Представлены три ссылки на экспериментальные работы, две из которых (одна, самая первая – 1981 г.) достаточно старые [34-36].
Вопрос о мутации, приводящей к способности расщеплять нейлон, обсуждается и на одном из зарубежных христианских форумов [37], где представлена уже ссылка 2000 г. [38].
Чтобы найти дополнительные данные о бактериях, потребляющих нейлон, автору представленного обзора снова пришлось пойти прямым путем, «тесными вратами»: собрать в международной поисковой системе Medline все рефераты со словом «нейлон». Про микроорганизмы оказалось всего шесть – было множество медицинских статей, где в нейлон что-то заворачивали и т.п. Обнаружился и полный текст японской работы 1995 г. [36].
Оказалось, что в 1984 г. в Японии показали наличие фермента, расщепляющего нейлон, который, как полагают, кодируется геном, образовавшимся путем мутации «со сдвигом рамки считывания» («frameshift» – в последовательности гена исчезает или прибавляется одна пара оснований) [35]. Сдвинулось такое считывание вдоль матрицы ДНК, и из некоего другого гена (кодирующего белок, содержащего много аргинина) образовался ген фермента, отвечающего за деградацию нейлона. Однако в рефератах более поздних исследований ничего про образование совершенно нового, уникального белка (пусть и путем изменения считывания «старого» гена), равно и как в тексте статьи 1995 г. [36], не упоминается. В последней же просто продемонстрирован экспериментально факт, что при определенных условиях культивации первоначально не способный расщеплять нейлон штамм бактерии Pseudomonas aeruginosa начинает вырабатывать фермент, способствующий усваиванию этого полимера. О возможных молекулярных механизмах такого явления сказано, что они «пока не ясны» [36].
Зато в других работах продемонстрировано, что гены, кодирующие расщепляющие нейлон ферменты (всего ферментов открыто несколько), локализуются у флавобактерий на плазмиде pOAD2 (напомним, плазмида – фрагмент бактериальной ДНК вне хромосомы), а восемь участков этой плазмиды гомологичны генам следующих «обычных» ферментов: олигопептидпермеазе, изопенициллин-N-ацилтрансферазе и др. [38].
В 1998 г. очищен и охарактеризован нейлон-расщепляющий фермент уже из плесневых грибков (white rot fungus). Оказалось, что это марганцево-зависимая пероксидаза – также «обычный» фермент, обеспечивающий в норме устойчивость к перекисям (они постоянно образуются в клетке в результате естественного метаболизма) [39]. Пероксидазы есть не только у низших грибков, но и у бактерий, конечно. И вообще у всех организмов – иначе те просто не смогут существовать.
Так что, скорее всего, никакого «нового гена», никакой «нейлоновой конфузии» и здесь мы не имеем – просто путем мутаций некоторые гены предсуществующих ферментов так изменяются, что последние становятся способны расщеплять нейлон. В подкрепление этой мысли скажем, что в совсем недавнем (2003 г.) американском обзоре по молекулярной эволюции генов, где как раз углубленно рассматривают вопросы возникновения новых генов путем разной эволюции, никакого упоминания ни о нейлоне, ни о его потреблении микроорганизмами нет даже в списке литературы [40]. Вряд ли пропустили бы, если бы что-то было.
В противоположность этому, в обширной и информативной дискуссии на научном креационном форуме подробно рассмотрен вопрос о генах, кодирующих расщепляющие нейлон ферменты. Не вдаваясь в специальные подробности скажем, что из материала следует, во-первых, невероятность их возникновения путем случайных мутаций, и, во-вторых, что появление новых генных аллелей обусловлено изменениями и умножениями уже имеющейся генной информации [41].
Итак, какой мы можем сделать вывод. На примере воздействия антибиотиков мы рассмотрели молекулярные механизмы эволюционных приспособлений микроорганизмов к изменяющимся условиям окружающей среды. Причем явно – под значительным давлением естественного отбора. Никаких бесспорных фактов возникновения новых генов и увеличения генной информации нам не встретилось, в большинстве случаев, действительно, только ее порча. А ведь бактерии имеют очень быстрый метаболизм, у них отсутствуют фазы клеточного цикла, как у эукариот (проще говоря, бактерии непрерывно делятся, если, при крайне неблагоприятных условиях, не пребывают в виде спор). За год у бактерий сменяется до 100.000 поколений [11], темп их мутирования крайне высок [1, 2].
Почему мы не наблюдаем у бактерий макроэволюции (образования новых типов), ведь ее проявления должны быть обнаружены даже в лабораторных условиях (опыт может длиться и несколько лет)?
Эволюционисты-теоретики тоже задаются этим вопросом. Вот вполне наукообразно изложенный обзор на одном из атеистических сайтов, который посвящен разбору аргументов креационистов [42]. Там на этот счет указывается, что, дескать, «темпы реальной эволюции зависят не от темпов размножения вида, а от его отношений со средой, от мощи экологических ограничений, накладываемых на вид другими членами и факторами экосистемы». И дана в том числе ссылка [5], на теоретический труд двух авторов, по крайней мере о первом из которых мне точно известно, что он никакого отношения ни к молекулярной биологии, ни к мутациям не имеет. И к генам – тоже.
Далее идут рассуждения, что «хорошо приспособленный вид в стабильных и стабильно непостоянных условиях может существенно не меняться неограниченно долго, а отношения бактерий со средой едва ли принципиально изменились с протерозоя до современности. Если же условия изменятся, то темпы трансформации определяются в первую очередь интенсивностью естественного отбора, то есть тем, насколько выживание или гибель особи зависит от ее индивидуальных наследственных особенностей, а не является результатом простой случайности. Гибель бактерий обычно массова и неизбирательна... К тому же, геном бактерий гаплоидный, рекомбинации редки и случайны, и возможности формирования удачных комбинаций генов крайне ограничены, что сильно сокращает поле деятельности отбора» [42].
Все это, хотя и кажется наукообразным, на мой взгляд крайне мутно, запутанно и лежит в области отвлеченных от реальности взаимопротиворечащих эклектико-схоластических рассуждений. Действительно, последнее утверждение насчет редкости рекомбинаций (появления новых сочетаний генов) у бактерий, что, де, должно снижать темпы их эволюции, и вовсе круто. Авторы забывают про крайне интенсивный обмен между бактериями генетической информацией путем трансформации, конъюгации и трансдукции (см. хотя бы [1]), а также наличие у них мобильных элементов (транспозонов) [43], и плазмид [1, 2, 6]. Быстрый обмен и перегруппировка информации у бактерий должны даже по логике идти по сравнению с высшими организмами гораздо быстрее (на более быстрое мутирование микроорганизмов указано и в учебных пособиях по биологии [1]). Именно поэтому столь много различных штаммов патогенных бактерий, именно поэтому столь быстро развивается устойчивость к антибиотикам. Аналогичная картина – и у вирусов (вспомним мутации вирусов гриппа).
Если механизмы макроэволюции реальны, то остается все-таки малопонятным, почему до сих пор никто не смог обнаружить в лабораторных условиях возникновение новых типов и родов микроорганизмов.
Но – бактерии бактериями, однако существуют еще и другие типы организмов. Исследованию их «эволюции» на молекулярном уровне посвящена даже специальная дисциплина. Возникает вопрос: может, именно в соответствующих публикациях молекулярных эволюционистов имеется что-нибудь важное о возникновении новых генов и новой генной информации. Необходимо было рассмотреть специальные источники.