Биологически важные классы органичеких соединений

Введение

1.1. Биоорганическая химия как область науки, изучающая строение и механизм функционирования биологически активных молекул с позиций органической химии. Предмет и задачи биоорганической химии как учебной дисциплины в медицинских вузах. Органическая химия – фундаментальная основа биоорганической химии.

1.2. Классификационные признаки органических соединений: строение углеродного скелета и природа функциональной группы. Функциональные группы, органические радикалы. Биологически важные классы органических соединений: спирты, фенолы, тиолы, амины, эфиры, сульфиды, альдегиды, кетоны, карбоновые кислоты и их производные.

Основные правила систематической номенклатуры ИЮПАК для органических соединений; заместительная и радикально-функциональная номенклатура.

1.3. Теория строения органических соединений А.М.Бутлерова. Изомерия как специфическое явление органической химии.

1.4. Физико-химические методы выделения и исследования органических соединений, имеющие значение для медицинского анализа (экстракция, хроматография, поляриметрия, инфракрасная и ультрафиолетовая спектроскопия, масс-спектроскопия).

Биологически важные классы органичеких соединений

2.1. Теоретические основы строения органических соединений и факторы, определяющие их реакционную способность.

2.1.1. Пространственное строение органических соединений. Проблема взаимосвязи стереохимического строения с проявлением биологической активности.

Важнейшие понятия стереохимии – конформация и конфигурация.

Конформация открытых цепей. Вращение вокруг одинарной связи как причина возникновения различных конформаций. Проекционные формулы Ньюмена. Энергетическая характеристика конформационных состояний; заслонные, заторможенные, скошенные конформации. Пространственное сближение определенных участков цепи как одна из причин преимущественного образования пяти- и шестичленных циклов.

Конформации (кресло, ванна) циклических соединений (циклогексан, тетрагидропиран). Аксиальные и экваториальные связи.

Конфигурация. Проекционные формулы Фишера. Стереохимическая номенклатура: R, S- и D, L-системы. Глицериновый альдегид как кофигурационный стандарт. Оптическая активность. Хиральные и ахиральные молекулы. Стереоизомеры: энантиомеры и s-диастереоизомеры. Мезоформы. Рацематы.

p-Диастереоизомеры (цис- и транс-изомеры). Е, Z- система стереохимической номенклатуры.

2.1.2. Взаимное влияние атомов и способы его передачи в молекулах органических соединений.

Сопряжение как один из важнейших факторов повышения устойчивости молекул и ионов биологически важных соединений. Виды сопряжения:

p, p- и р, p-сопряжение.

Сопряженные системы с открытой цепью: 1,3-диены (1,3-бутадиен), полиены (b-каротин, ретиналь и др.), a, b-ненасыщенные карбонильные соединения, карбоксильная группа.

Сопряженные системы с замкнутой цепью. Ароматичность; критерии ароматичности. Ароматичность бензоидных (бензол, нафталин) и гетероциклических (фуран, тиофен, пиррол, пиразол, имидазол, пиридин, пиримидин, пурин) соединений.

Поляризация связей и электронные эффекты (индуктивный и мезомерный). Электронодонорные и электроноакцепторные заместители.

2.1.3. Кислотность и основность органических соединений. Теории Бренстеда и Льюиса. Общие закономерности в изменении кислотных и основных свойств во взаимосвязи с природой атома в кислотном и основном центрах, электронными эффектами заместителей в этих центрах и сольватационными эффектами.

Кислотные свойства органических соединений с водородосодержащими функциональными группами (спирты, тиолы, карбоновые кислоты).

Основные свойства нейтральных молекул, содержащих гетероатом с неподеленной парой электронов (спирты, простые эфиры, карбонильные соединения, амины) и анионов (гидроксид-, алкоксид-, енолят-, ацилат-ионы). Кислотно-основные свойства азотсодержащих гетероциклов (пиррол, имидазол, пиридин).

Водородная связь как специфическое проявление кислотно-основных свойств. Значение водородных связей в формировании надмолекулярных структур в живых организмах.

2.2. Общие закономерности реакционной способности органических соединений как химическая основа их биологического функционирования.

Классификация органических реакций по результату (замещение, присоединение, элиминирование, перегруппировки, окислительно-восстановительные) и по механизму – радикальные, ионные (электрофильные, нуклеофильные). Понятия – субстрат, реагент, реакционный центр. Типы разрыва ковалентной связи в органических соединениях и образующиеся при этом частицы: свободные радикалы (гомолитической разрыв) , корбокатионы и карбанионы (гетеролитический разрыв). Электронное и пространственное строение этих частиц и факторы, обуславливающие их относительную устойчивость.

2.2.1. Реакции свободно-радикального замещения: гомолитические реакции с участием С-Н связей sp3-гибридизованого атома углерода. Галогенирование. Региоселективность свободнорадикального замещения в аллильных и бензильных системах. Взаимодействие органических соединений с кислородом как химическая основа пероксидного окисления липидсодержащих систем. Ингибирование пероксидного окисления с помощью антиоксидантов (фенолы, a-токоферол).

2.2.2. Реакции электрофильного присоединения: гетеролитические реакции с участием p-связи. Механизм реакции гидрогалогенирования и гидратации. Кислотный катализ. Влияние статического и динамического факторов на региоселективность реакций, правило Марковникова. Особенности электрофильного присоединения к сопряженным системам (1,3-диенам, a, b-ненасыщенным альдегидам, карбоновым кислотам).

2.2.3. Реакции электрофильного замещения: гетеролитические реакции с участием ароматической системы. Механизм реакций галогенирования и алкилирования ароматических соединений. Роль катализаторов в образовании электрофильной частицы (кислоты Льюиса; кислотный катализ в алкилировании алкенами и спиртами).

Влияние заместителей в ароматическом ядре и гетероатомов в гетероциклических соединениях на реакционную способность в реакциях электрофильного замещения.

Ориентирующее влияние заместителей и гетероатомов.

2.2.4. Реакции нуклеофильного замещения у sp3-гибридизованного атома углерода: гетеролитические реакции, обусловленные поляризацией s-связи углерод-гетероатом (галогенопроизводные, спирты). Влияние электронных, пространственных факторов и стабильности уходящих групп на реакционную способность соединений в реакциях нуклеофильного замещения. Стереохимия реакций нуклеофильного замещения.

Реакция гидролиза галогенопроизводных. Реакции алкилирования спиртов, фенолов, тиолов, сульфидов, аммиака и аминов. Роль кислотного катализа в нуклеофильном замещении гидроксильной группы. Дезаминирование соединений с первичной аминогруппой.

Биологическая роль реакций алкилирования.

Реакции элиминирования (дегидрогалогенирование, дегидратация). Повышенная СН-кислотность как причина реакций элиминирования.

2.2.5. Реакции нуклеофильного присоединения: гетеролитические реакции с участием p-связи углерод-кислород (альдегиды, кетоны). Реакции карбонильных соединений с водой, спиртами, тиолами, аминами и их производными. Влияние электронных и пространственных факторов, роль кислотного катализа. Обратимость реакций нуклеофильного присоединения. Гидролиз ацеталей. Образование и гидролиз иминов как химическая основа пиридоксалевого катализа.

Реакции альдольного присоединения. Основный катализ. Строение енолят-ионов.

Наличие a-СН-кислотного центра в молекулах карбонилсодержащих соединений как причина образования связи С-С в реакциях in vivo.

Альдольное расщепление как реакция обратная альдольному присоединению.

Биологическое значение этих процессов.

2.2.6. Реакции нуклеофильного замещения у sp2-гибридизированного атома углерода (карбоновые кислоты и их функциональные производные). Реакции ацилирования – образование ангидридов, сложных эфиров, сложных тиоэфиров, амидов – и обратные им реакции гидролиза. Роль кислотного и основного катализа.

Ацилирующие реагенты (ангидриды, карбоновые кислоты, сложные эфиры, сложные тиоэфиры), сравнительная активность этих реагентов.

Ацилфосфаты и ацилкофермент А - природные макроэргические ацилирующие агенты. Биологическая роль реакций ацилирования.

Реакции по типу альдольного присоединения с участием кофермента А как путь образования углерод-углеродной связи.

2.2.7. Реакции окисления и восстановления органических соединений. Реакции окисления спиртов, тиолов, сульфидов, карбонильных соединений, аминов. Реакции восстановления карбонильных соединений, дисульфидов, иминов. Понятие о переносе гидрид-иона и химизме действия системы НАД+ - НАДН.

Понятие об электронном переносе и химизме действия системы ФАД – ФАДН2.

Окисление p-связи и ароматических фрагментов (эпоксидирование, гидроксилирование).

2.3.Поли- и гетерофункциональность как один из характерных признаков органических соединений, участвующих в процессах жизнедеятельности и являющихся родоначальниками важнейших групп лекарственных средств.

Особенности проявления кислотно-основных свойств (амфолиты). Циклизация и хелатообразование. Особенности во взаимном влиянии функциональных групп в зависимости от их относительного расположения.

2.3.1. Многоатомные спирты: этиленгликоль, глицерин, инозит. Образование хелатных комплексов с участием a-диольных фрагментов. Хелатирование как способ сохранения стабильного валентного состояния биогенных металлов и выведения ионов тяжелых металлов из организма.

Двухатомные фенолы: гидрохинон, резорцин, пирокатехин, Окисление двухатомных фенолов. Система гидрохинон-хинон как химическая основа дейсвия убихинонов в окислительно-восстановительных процессах. Фенолы как антиоксиданты (ловушки свободных радикалов).

2.3.2. Двухосновные карбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Превращение янтарной кислоты в фумаровую как пример биологической реакции дегидрирования.

Угольная кислота и ее производные (уретаны, уреиды кислот, мочевина). Гуанидин. Карбамиолфосфат.

2.3.3. Аминоспирты: аминоэтанол (коламин), холин, ацетилхолитн. Аминофенолы: дофамин, норадреналин, адреналин. Понятие о биологической роли этих соединений и их производных.

2.3.4. Гидрокси- и аминокислоты. Реакции циклизации. Лактоны. Лактамы. Гидролиз лактонов и лактамов. Реакции элиминирования b-гидрокси и b-аминокислот.

Одноосновные (молочная, b- и g-гидроксимасляные), двухосновные (яблочная, винные), трехосновные (лимонная) гидроксикислоты. Образование лимонной кислоты в результате альдольного присоединения.

Представление о строении b-лактамных антибиотиков.

2.3.5. Альдегидо- и кетонокислоты: глиоксиловая, пировиноградная(фосфоенолпируват), ацетоуксусная, щавелевоуксусная, a-оксоглутаровая. Реакции декарбоскилирования b-кетонокислот и окислительного декарбоксилирования a-кетонокислот. Кетоенольная таутомерия.

2.3.6. Гетерофункциональные производные бензольного ряда как лекарственные средства.

Салициловая кислота и ее производные (ацетилсалициловая кислота, фенилсалицилат).

п-Аминобензойная кислота и ее производные (анестезин, новокаин). Биологическая роль п-аминобензойной кислоты.

Сульфаниловая кислота и ее амид (стрептоцид). Сульфаниламидные препараты.

2.3.7. Биологически важные гетероциклические системы.

Гетероциклы с одним гетероатомом. Пиррол, индол, пиридин, хинолин. Понятие о строениии тетрапиррольных соединений (порфин, гем).

Биологически важные производные пиридина – никотинамид, пиридоксаль, производные изоникотиновой кислоты.

Производные 8-гидроксихинолина – антибактериальные средства комплексообразующего действия.

Гетероциклы с несколькими гетероатомами. Пиразол, имидазол, тиазол, пиразин, пиримидин, пурин. Таутомерия на примере имидазола.

Пиразолон-3 – структурная основа ненаркотических анальгетиков (анальгин).

Барбитуровая кислота и ее производные. Гидроксипурины (гипоксантин, ксантин, мочевая кислота). Лактим-лактамная таутомерия.

Биотин. Тиамин. Понятие о строении и биологической роли.

Алкалоиды. Метилированные ксантины (теобромин, теофиллин, кофеин). Представление о строении никотина, морфина, хинина, атропина.

3. Биополимеры и их структурные компоненты. Липиды.

3.1. Пептиды и белки.

3.1.1. Аминокислоты, входящие в состав белков. Строение. Номенклатура. Стереоизомерия. Кислотно-основные свойства, биполярная структура.

Классификация с учетом различных признаков: по химической природе радикала и содержащихся в нем заместителей; по кислотно-основным свойствам.

Биосинтетические пути образования a-аминокислот из кетокислот: реакции восстановительного аминирования и реакции трансаминирования. Пиридоксалевый катализ.

Химические свойства a-аминокислот как гетерофункциональных соединений. Образование внутрикомплексных солей. Реакции этерификации, ацилирования, алкилирования, образование иминов.

Биологически важные реакции a-аминокислот. Реакции дезаминирования (неокислительного и окислительного). Реакции гидроксилирования.

Декарбоксилирование a-аминокислот – путь к образованию биогенных аминов и биорегуляторов (коламин, гистамин, триптамин, серотонин, кадаверин, b-аланин, g-аминомасляная кислота).

3.1.2. Пептиды. Строение пептидной группы. Гидролиз пептидов.

Установление аминокислотного состава с помощью современных физико-химических методов.

Установление первичной структуры аминов. Определение аминокислотной последовательности.

3.1.3. Первичная структура белков. Частичный и полный гидролиз.

Понятие о сложных белках. Гликопротеины, липопротеины, нуклеопротеины, фосфопротеины.

3.2. Углеводы.

3.2.1. Моносахариды. Классификация.

Стереоизомерия моносахаридов. D- и L-стереохимические ряды. Открытые и циклические формы. Формулы Фишера и формулы Хеуорса. Фуранозы и пиранозы; a- и b-аномеры. Цикло-оксо-таутомерия. Конформация пиранозных форм моносахаридов.

Строение наиболее важных представителей пентоз (рибоза, ксилоза); гексоз (глюкоза, манноза, галактоза, фруктоза); дезокисахаров (2-дезоксирибоза); аминосахаров (глюкозамин, маннозамин, галактозамин).

Нуклеофильное замещение у аномерного центра в циклических формах моносахаридов. О- и N-гликозиды. Гидролиз гликозидов. Фосфаты моносахаридов. Ацилирование аминосахаров.

Окисление моносахаридов. Восстановительные свойства альдоз. Гликоновые, гликаровые, гликуроновые кислоты. Аскорбиновая кислота.

Восстановление моносахаридов (ксилит, сорбит, маннит).

Взаимопревращение альдоз и кетоз. Реакции альдольного типа в ряду моносахаридов: альдольное присоединение дигидроацетона к глицериновому альдегиду; альдольное расщепление фруктозы; образование нейраминовой кислоты.

3.2.2. Олигосахариды. Дисахариды: мальтоза, целлобиоза, лактоза, сахароза. Строение, цикло-оксо-таутомерия. Восстановительные свойства. Гидролиз. Конформационное строение мальтозы и целлобитозы.

3.2.3. Полисахариды.

Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, декстран, целлюлоза. Пектины (полигалактуроновая кислота). Первичная структура, гидролиз. Понятие о вторичной структуре (амилоза, целлюлоза).

Гетерополисахариды: гиалуроновая кислота, хондроитинсульфаты. Первичная структура. Представление о строении гепарина. Понятие о смешанных биополимерах (пептидогликаны, протеогликаны, гликопротеины, гликолипиды).

3.3. Нуклеиновые кислоты.

3.3.1. Пиримидиновые (урацил, тимин, цитозин) и пуриновые (аденин, гуанин) основания. Ароматические свойства. Лактим-лактамная таутомерия. Реакции дезаминирования. Комплементарность нуклеиновых оснований. Водородные связи в комплементарных парах нуклеиновых оснований.

3.3.2. Нуклеозиды. Гидролиз нуклеозидов.

Нуклеотиды. Строение мононуклеотидов, образующих нуклеиновые кислоты. Гидролиз нуклеотидов.

3.3.3. Первичная структура нуклеиновых кислот. Фосфодиэфирная связь. Рибонуклеиновые и дезоксирибонуклеиновые кислоты. Нуклеотидный состав РНК и ДНК. Гидролиз нуклеиновых кислот.

Понятие о вторичной структуре ДНК. Роль водородных связей в формировании вторичной структуры.

3.3.4. Лекарственные средства на основе модифицированных нуклеиновых оснований (фторурацил, меркаптопурин). Нуклеозиды – антибиотики. Принцип химического подобия. Изменение структуры нуклеиновых кислот под действием химических веществ. Мутагенное действие азотистой кислоты.

Нуклеозидмоно- и полифосфаты. АМФ, АДФ, АТФ. Никотинамид-нуклетидные коферменты. Строение НАД+ и его фосфата НАДФ+. Система НАД+ - НАДН.

3.4. Липиды.

3.4.1. Омыляемые липиды.

Нейтральные липиды. Естественные жиры как смесь триацилглицеринов. Природные высшие жирные кислоты: пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая, арахидоновая.

Пероксидное окисление фрагментов жирных кислот в клеточных мембранах. Конечные продукты окисления (малоновый диальдегид, диеновые конъюгаты и др.), принцип анализа ТБК-реагирующих веществ.

Фосфолипиды. Фосфатидовые кислоты. Фосфатидилколамины и фосфатидилсерины (кефалины), фосфатидилхолины (лецитины) – структурные компоненты клеточных мембран.

Сфинголипиды, церамиды, сфингомиелины. Гликолипиды (цереброзиды, ганглиозиды). Понятие о структурных компонентах.

3.4.2. Неомыляемые липиды. Изопреноиды.

Терпены. Моно- и бициклические терпены. Лимонен, ментол, камфора. Сопряженные полиены: каротиноиды, витамин А.

Стероиды. Представление об их биологической роли. Стеран, конформационное строение 5a- и 5b-стеранового скелета. Углеводороды – родоначальники групп стероидов: эстран, андростан, прегнан, холан, холестан.

Стероидные гормоны. Эстрогены, андрогены, гестагены, кортикостероиды.

Желчные кислоты. Холевая кислота. Гликохолевая и таурохолевая кислоты.

Стеарины. Холестерин. Эргостерин, превращение его в витамины группы Д.

Агликоны сердечных гликозидов. Дигитоксигенин. Строфантидин.

ЛИТЕРАТУРА

Основная

1. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия. М.: Медицина, 1991. – 527с.

2. «Руководство к лабораторным занятиям по биоорганической химии». Под ред. Тюкавкиной Н.А., М.: Медицина, 1999. – 320 с.

Дополнительная

1. Овчинников Ю.А. Биоорганическая химия. М.: Просвещение, 1987. – 815 с.

2. Райлс А., Смит К., Уорд Р. Основы органической химии (для студентов биологических, медицинских и сельскохозяйственных специальностей). М.: Мир, 1983. – 352 с.

*Программа по биоорганической химии для студентов медицинских вузов. – М.; ГОУ ВУНМЦ МЗ РФ, 2000, 18 стр.

Наши рекомендации