ЛЕКЦИЯ №4. Физиология микроорганизмов. Размножение, питание, дыхание, ферментативная активность бактерий

Для понимания процессов обмена веществ в клетке необходимо знать ее химический состав.

По своему химическому составу микробы в основном не отличаются от других живых существ. Однако у микроорганизмов, принадлежащих к различным систематическим и физиологическим группам, содержание отдельных химических элементов может быть различным. Например, серные бактерии всегда богаче других микробов серой; железобактерии – железом и др.

Больше всего в микробной клетке воды, которая составляет 80-88%. Так, например, кишечная палочка содержит 73,3% воды, 26,7% сухого вещества. Палочка протея содержит 80% воды и 20% сухого вещества. Плесени содержат до 85% воды, а дрожжи – 63-83%.

Вода для микробной клетки – необходимая составная часть. В ней происходят различные химические процессы, где она участвует как компонент. Например, гидролитическое расщепление белка и углеводов возможно только после присоединения молекулы воды. Все вещества поступают в клетку с водой и только с водой удаляются продукты обмена. Вода входит в химический состав белков, жиров, углеводов и продуктов распада. Сухое вещество микробной клетки состоит из белков, жиров, углеводов и минеральных солей.

Бактериальная клетка состоит из органогенов — азота (8— 15% сухого остатка), углерода (45—55%), кислорода (30%), водорода (6—8%). Из них и других элементов и соединений микроорганизмы синтезируют белки, нуклеопротеиды, углеводы, липиды, нуклеиновые кислоты, ферменты, витамины и пр.

Минеральные вещества бактерий — это неорганические компоненты (фосфор входит в состав нуклеиновых кислот, сера, натрий участвует в поддержании осмотического давления в клетке, магний, калий, кальций, железо ферментов АТФ — аккумулятор энергии в клетке, хлор и др.), микроэлементы в дыхательных ферментах (молибден, кобальт, бор), которые участвуют в синтезе, активизируют их, марганец, цинк, медь и др.

Главная масса сухого вещества микробов – белки, содержание которых часто достигает 80%. Количество белковых веществ в клетке непостоянно. Чем богаче питательная среда азотными веществами, тем больше белка входит в состав протоплазмы клеток. В белках микробов обнаружены все аминокислоты, имеющиеся в белках животных и растений. У разных микробов число аминокислот неодинаково. В состав клетки входят сложные белки (протеиды), которые состоят из нуклеиновых кислот, полисахаридов, и простые (протеины). Со сложными белками связаны видовые особенности и наследственная передача специфических признаков; образование новых видов и разновидностей микроорганизмов.

Углеводы — 12—18% сухого вещества. Это основной источник энергии и углерода. Из углеводов в микробной клетке больше всего содержится полисахаридов. Полисахариды в большом количестве обнаруживаются у капсульных микроорганизмов. В протоплазме имеется гликоген, декстрин, глюкоза, глюкороновая кислота.

Липиды — составляют ~ 10% сухого остатка. У бактерий, откладывающих жир в виде особых включений, количество липидов доходит до 40% (микобактерии туберкулеза). Липиды — это запасные вещества, повышающие устойчивость бактерий во внешней среде. Связываясь с белками и углеводами, липиды составляют сложный комплекс, определяющий токсические свойства микроорганизмов.

Жизненные функции микроорганизмов: питание, дыхание, рост и размножение — изучает физиология. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных, но взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм).

Ассимиляция — это усвоение питательных веществ и использование их для синтеза клеточных структур.

При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов. В микроорганизмах происходит интенсивный обмен веществ, за сутки 1 микробная клетка может переработать питательных веществ, которые в 30—40 раз больше ее массы.

Микробная клетка использует питательные субстраты для синтеза составных частей своего тела, ферментов, пигментов роста.

Питание бактерий

Типы питания бактерий определяются по характеру усвоения углерода и азота.

По усвоению углерода бактерии делят на 2 типа:

автотрофы, или литотрофы, — бактерии, использующие в качестве источника углерода СО2 воздуха.

гетеротрофы, или органотрофы, — бактерии, которые нуждаются для своего питания в органическом углероде (углеводы, жирные кислоты).

По способности усваивать азот микроорганизмы делятся на 2 группы: аминоавтотрофы и амоногетеротрофы.

Аминоавтотрофы — для синтеза белка клетки используют молекулярный азот воздуха или усваивают его из аммонийных солей.

Аминогетеротрофы — получают азот из органических соединений — аминокислот, сложных белков. Сюда относятся все патогенные микроорганизмы и большинство сапрофитов.

По характеру источника использования энергии микроорганизмы делятся на фототрофы, использующие для биосинтетических реакций энергию солнечного света, и хемотрофы.

Хемотрофы получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенного для человека вида).

Факторы роста: наряду с пептонами, углеводами, жирными кислотами и неорганическими элементами, бактерии нуждаются в специальных веществах — ростовых факторах, играющих роль катализаторов в биохимических процессах клетки и являющихся структурными единицами при образовании некоторых ферментов. К факторам роста относятся различные витамины, некоторые аминокислоты, пуриновые и пиримидиновые основания и др.

Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания.

Питательные среды подразделяются на 4 основные группы:

· универсальные;

· специальные;

· избирательные (элективные);

· дифференциально-диагностические.

1. Универсальные (МПА, МПБ) содержат питательные вещества, в присутствии которых растут многие виды патогенных и непатогенных бактерий.

2. Питательные специальные среды применяют для выращивания бактерий, не размножающихся на универсальных средах (кровяной, сывороточный агар, сывороточный бульон).

3. Избирательные (элективные) среды служат для выделения определенного вида микробов, росту которых они способствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Соли желчных кислот, подавляя рост кишечной палочки, делают среду элективной для брюшного тифа.

4. Дифференциально-диагностические среды позволяют отличить (отдифференцировать) один вид микробов от другого по ферментативной активности, например, среды Гиса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды. Кроме того, в лабораториях для первичного посева и транспортировки исследуемого материала применяют консервирующие среды (глицериновую, магниевую и т. д.).

Дыхание бактерий

Атмосферный воздух содержит-78% азота, 20% кислорода и 0,03—0,09% углекислого газа. Углекислота и азот воздуха могут быть использованы только автотрофами. Кислород же играет важную роль в метаболизме (обмене веществ), дыхании и получении энергии большинства видов бактерий.

Дыхание (или биологическое окисление) — это сложный процесс, который сопровождается выделением энергии, необходимой микроорганизмам для синтеза различных органических соединений. Бактерии, как и высшие животные, для дыхания используют кислород. Однако Л. Пастером было доказано существование таких бактерий, для которых наличие свободного кислорода является губительным, энергия, необходимая для жизнедеятельности, получается ими в процессе брожения.

Все бактерии по типу дыхания подразделяются на облигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы.

Облигатные (строгие) аэробы развиваются при наличии в атмосфере 20% кислорода (микобактерии туберкулеза), содержат ферменты, с помощью которых осуществляется перенос водорода от окисляемого субстрата к кислороду воздуха.

Микроаэрофилы нуждаются в значительно меньшем количестве кислорода, и его высокая концентрация хотя и не убивает бактерии, но задерживает их рост (актиноисцеты, бруцеллы, лептоспиры).

Факультативные анаэробы могут размножаться как в присутствии, так и в отсутствие кислорода (большинство патогенных и сапрофитных микробов — возбудители брюшного тифа, паратифов, кишечная палочка).

Облигатные анаэробы — бактерии, для которых наличие молекулярного кислорода является губительным (клостридии столбняка, ботулизма).

Аэробные бактерии в процессе дыхания окисляют различные органические вещества (углеводы, белки, жиры, спирты, органические кислоты и пр.).

Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Процессы разложения органических веществ в безкислородных условиях, сопровождающиеся выделением энергии, называют брожением. В зависимости от участия определенных механизмов различают следующие виды брожения: спиртовое, осуществляемое дрожжами, молочно-кислое, вызываемое молочно-кислыми бактериями, масляно-кислое и пр.

С выделением большого количества тепла при дыхании некоторых микроорганизмов связаны процессы самовозгорания торфа, навоза, влажного сена и хлопка.

Ферментативная активность бактерий

Ферменты — биологические катализаторы, высокомолекулярные вещества белковой природы, вырабатываемые живой клеткой. Они строго специфичны и играют важнейшую роль в обмене веществ микроорганизмов. Специфичность их связана с активными центрами, образуемыми группой аминокислот, т. е. каждый фермент реагирует с определенным химическим соединением или катализирует одну или несколько близких химических реакций. Например: фермент лактаза расщепляет лактозу, мальтаза — мальтозу и т. д.

Экзоферменты — выделяясь во внешнюю среду, расщепляют макромолекулы питательных веществ, происходящих внутри клетки.

Эндоферменты — участвуют в реакциях обмена веществ до более простых соединений, которые могут быть усвоены микробной клеткой (экзоферменты гидролиза вызывают гидролиз жиров, белков, углеводов).

Ферментный состав микроорганизмов является постоянным, а различные виды микробов четко различаются по набору ферментов. Поэтому изучение ферментативного состава имеет важное значение для идентификации различных микроорганизмов.

Практическое использование ферментативных свойств микробов: процессы брожения, грибы в пивоварении и виноделии, обработка шкур, для смягчения; консервирование, приготовление биодобавок к стиральным порошкам, для удаления белковых загрязнений, так как они расщепляют белки до водорастворимых.

С помощью ферментов получают витамины, гормоны, алкалозы.

Рост и размножение микроорганизмов

Одним из проявлений жизнедеятельности микроорганизмов является их рост и размножение.

Рост — это увеличение размеров отдельной особи.

Размножение — способность организма к воспроизведению.

Основным способом размножения у бактерий является поперечное деление, которое происходит в различных плоскостях с формированием многообразных сочетаний, клеток (гроздья, цепочки, тюки и т. д.). У бактериальных клеток делению предшествует удвоение материнской ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой. Клетки с перегородкой деления расходятся в результате действия ферментов, которые разрушают сердцевину перегородки.

Скорость размножения бактерий различна и зависит от вида микроба, возраста культуры, питательной среды, температуры.

При выращивании бактерий в жидкой питательной среде наблюдается несколько фаз роста культур:

1. Фаза исходная (латентная) — микробы адаптируются к питательной среде, увеличивается размер клеток. К концу этой фазы начинается размножение бактерий.

2. Фаза логарифмического инкубационного роста — идет интенсивное деление клеток. Длится эта фаза около 5 часов. При оптимальных условиях бактериальная клетка может делиться каждые 15—30 мин.

3. Стационарная фаза — число вновь появившихся бактерий равно числу отмерших. Продолжительность этой фазы выражается в часах и колеблется в зависимости от вида микроорганизмов.

4. Фаза отмирания — характеризуется гибелью клеток в условиях истощения питательной среды и накопления в ней продуктов метаболизма микроорганизмов.

Если питательная среда, в которой культивируются микроорганизмы, будет обновляться, то можно поддерживать фазу логарифмического роста.

При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Колонии могут быть выпуклыми или плоскими, с ровными или неровными краями, с шероховатой или гладкой поверхностью и иметь различную окраску: от белой до черной. Все эти особенности (культуральные свойства) учитывают при идентификации бактерий, а также при отборе колоний для получения чистых культур.

Наши рекомендации