Цитологические основы наследственности.
1) Клетка – основная единица биологической активности.
Клетка является основой строения любого живого организма, а при размножении – связующим звеном двух поколений. Главные части клетки: клеточная оболочка, или мембрана клетки, цитоплазма с органоидами, ядро, ограниченное от цитоплазмы ядерной оболочкой (у эукариотов, прокариоты ядер не имеют). В этом принципиальное сходство клеток организма. А отличаются они в зависимости от деятельности и места расположения в организме. Генетическая информация, которую передаёт одно поколение клеток или организмов другому, заключена преимущественно в ядре клеток. Ядро в клетке различимо только в интерфазе – периоде между её делениями.
2) Структура и функции клеточного ядра.
Ядерная оболочка состоит из наружной и внутренней мембран. Наружная переходит в ЭПС и несёт рибосомы. Оболочка пронизана ядерными порами, через которые идут обменные процессы между ядром и цитоплазмой.
Ядерный сок – кариолимфа, представляет собой однородную массу, заполняющую пространство между структурами ядра (хроматином и ядрышками). Она содержит белки, нуклеотиды, АТФ и различные виды РНК. Кариолимфа осуществляет взаимосвязь ядерных структур и обмен с цитоплазмой клетки.
Хроматин – вещество хромосом. Состоит из деспирализованной ДНК, соединённой с белками-гистонами в отношении 1:1,3. ДНК вместе с гистонами составляет нуклеосомы – тонкие нити, глыбки, гранулы, по виду напоминающие бусы. В делящейся клетке нити ДНК спирализуются (конденсация хроматина), образуя хорошо видимые, интенсивно окрашивающиеся структуры – хромосомы. Хромосомы ядра составляют его хромосомный набор – кариотип.
Ядрышко – одно или несколько, округлой структуры, состоят из РНК и белка, содержат липиды, ферменты. Функции ядрышек синтез р-РНК и сборка субъединиц рибосом, которые затем выходят в цитоплазму через поры в ядерной оболочке, где и завершается их сборка. Ядрышки – непостоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Образование ядрышек связано с участками вторичных перетяжек спутничных хромосом (ядрышковыми организаторами). В области вторичных перетяжек локализованы гены, кодирующие синтез рибосомальной РНК (р-РНК), а в самих ядрышках происходит формирование субъединиц рибосом.
3) Характеристика строения и классификация хромосом.
В период между делениями клетки хромосомы не видны. Они становятся видимыми, когда клетка приступает к делению и тогда хромосомы видны как две соединенные между собой нити – хроматиды.
Метафазная хромосома состоит из двух продольных нитей – хроматид, которые состоят из молекулы ДНК и белков-гистонов. Хроматиды соединены друг с другом в области первичной перетяжки - центромеры. Центромера делит тело хромосомы на два плеча. Плечи – это свободные концы хроматид. В зависимости от расположения центромеры различают следующие типы хромосом:
а) акроцентрические – центромера смещена от середины хромосомы к одному концу в основание плеча, получается одно плечо очень короткое, другое - намного длиннее;
б) субметацентрические – центромера также смещена от середины, но расположена так, что плечи имеют разную длину;
в) метацентрические – центромера расположена посередине, и плечи примерно одинаковой длины.
Некоторые хромосомы могут иметь вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником, это хромосомы со спутниками.
Совокупность хромосом соматической клетки, характеризующая организм данного вида, называется кариотипом.
Хромосомы подразделяются на аутосомы - одинаковые у обоих полов пары гомологичных хромосом и гетерохромосомы, или половые хромосомы – пара разных хромосом в хромосомном наборе у мужских и женских особей.
Кариотип человека 46 хромосом: 22 пары аутосом и пара половых хромосом, ХХ у женщин и ХУ у мужчин.
В соматических клетках организмов содержится диплоидный (двойной) набор хромосом – обозначается 2n. В гаметах – гаплоидный (одинарный) набор хромосом, обозначается 1n. Диплоидный набор состоит из пар гомологичных хромосом. Гомологичные хромосомы это хромосомы одинаковые по строению, форме, величине и содержащие одни и те же гены. Негомологичные хромосомы имеют разный генный набор и разное строение.
В период между делениями клетки хромосомы не видны. Они становятся видимыми, когда клетка приступает к делению и тогда хромосомы видны как две соединенные между собой нити – хроматиды.
В основе Парижской классификации хромосом человека (1971 г.) лежат методы специальной дифференциальной окраски, при которой в каждой хромосоме выявляется характерный только для неё порядок чередования поперечных светлых и тёмных сегментов. Хромосомы, имеющие одинаковый порядок генов, имеют и одинаковое чередование полос. У них одинаковое строение (длина, расположение центромеры и т. д.).
Короткое плечо хромосом обозначают латинской буквой p, а длинное – q. Каждое плечо хромосомы разделяют на районы, нумеруемые по порядку от центромеры к теломере. В некоторых коротких плечах выделяют один такой район, а в других (длинных) – до четырёх.
Основная функция хромосом – хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.