Основные положения клеточной теории

Список сокращений

ABA — артериоловенулярные анастомозы

АКТГ — адренокортикотропный гормон

АТФ — аденозинтрифосфат

АТФаза — аденозинтрифосфатаза

БОЕ-Э — бурстобразующая единица эритродитарная

ВИП — вазоактивный интестинальный пептид

ГАМК — гамма-аминомасляная кислота

ДЭС — диффузная эндокринная система

ИЛ — интерлейкин

КОЕ — колониеобразующая единица

КОЕ-Б — колониеобразующая единица базофильная

КОЕ-ГМ — колониеобразующая единица гранулоцитарно-моноцитарная

КОЕ-Пн — колониеобразующая единица гранулоцитарная

КОЕ-ГЭММ — колониеобразующая единица гранулоцитарно-эритроцитарно-моноцитарно-мегакариоцитарная

КОЕ-Эо — колониеобразующая единица эозинофильная

МИФ-клетки— малые интенсивно флюоресцирующие тормозные клетки

ПНФ — предсердный натрийуретический фактор

СДГ — сукцинатдегидрогеназа

СКК — стволовые клетки крови

цАМФ — циклический аденозинмонофосфат

ЩФ — щелочная фосфатаза

ЭПС — эндоплазматическая сеть

APUD — (от англ. - Amine Precursors Uptake and Decar­boxylation) - поглощение и декарбоксилирование предшественников аминов

ЛЕКЦИЯ 1

ПРЕДМЕТ И ЗАДАЧИ ГИСТОЛОГИИ, ЦИТО­ЛОГИИ И ЭМБРИОЛОГИИ. ЦИТОПЛАЗМА КЛЕТКИ. ОРГАНЕЛЛЫ И ВКЛЮЧЕНИЯ. СИМПЛАСТЫ И СИНЦИТИИ

Структура предмета гистологии, цитологии и эмбрио­логии. Шотология — наука о закономерностях развития, строении и функции тканей и органов. Гистология включает собственно гистологию, цитологию и эмбриологию.

Собственно гистология подразделяется на общую и частную.

Общая гистология изучает ткани, частная — ткани органов.

Цитология изучает закономерности развития, строение и функции клеток.

Общая цитология изучает общие закономерности разви­тия, строение и функции клеток, частная — паренхимные и стромальные клетки конкретных органов.

Эмбриология— наука о развитии зародыша.

Фундаментальными проблемами, решаемыми гистоло­гией, являются:

• Изучение закономерностей цитогенеза, гистогенеза, стро­ения и функции клеток и тканей.

• Изучение закономерностей дифференцировки и регенера­ции тканей.

• Выяснение роли нервной, эндокринной и иммунной си­стем в процессе морфогенеза и функции клеток, тканей и органов.

• Изучение возрастных особенностей клеток, тканей и орга­нов.

• Изучение адаптации клеток, тканей и органов к внешним воздействиям.

• Изучение морфогенеза в системе мать—плод.

• Изучение особенностей эмбриогенеза человека.

Прикладные проблемы. Изучение совместимости тканей и органов (переливание крови, трансплантация органов).

УЧЕНИЕ О КЛЕТКЕ. ЦИТОПЛАЗМА

Клетка впервые была открыта английским физиологом Р. Гуком в 1665 году. Гук при помощи сконструированного им примитивного микроскопа увидел в тонком срезе пробкового дерева ячейки. Это и были клетки.

Существенный вклад в клеточную теорию внесли Пуркинье, Броун, Шванн и Вирхов. Так, в 1830 году Пуркинье об­наружил в клетке цитоплазму, в 1833 году Броун увидел в клетке ядро, в 1838 году Шванн пришел к заключению, что клетки различных организмов имеют сходное строение, а в 1858 году Вирхов установил, что новые клетки образуют­ся в результате деления материнской клетки.

Основные положения клеточной теории

1. Клетка — наименьшая единица живого.

2. Клетки всех организмов имеют сходное строение.

3. Новые клетки образуются путем деления материнской клетки.

4. Многоклеточные организмы состоят из клеток, объеди­ненных в ткани и органы, регулируемые нервной, эндокрин­ной и иммунной системами.

Симпласт — многоядерные протоплазматические тяжи (волокна мышц).

Синцитий— соклетие, группа клеток, соединенных цито- плазматическими мостиками.

Клетка — элементарная живая система, состоящая из ядра и цитоплазмы и являющаяся основой развития, стро­ения и функции организма.

Состав цитоплазмы. Цитоплазма включает органеллы, располагающиеся в гиалоплазме.

Гиалоплазма в жидком состоянии — золь, в твердом со­стоянии — гель.

В состав гиалоплазмы входят раствор минеральных со­лей, углеводы, белки, аминокислоты, ферменты. Солей калия больше внутри клетки, меньше — снаружи; соли натрия в ги­алоплазме образуют изотонический раствор (0,9 %). Поэтому если клетку поместить в дистиллированную воду, то она бу­дет набухать; если же ее поместить в гипертонический ра­створ натрия или в концентрированный раствор глюкозы, то она будет сморщиваться.

Функции гиалоплазмы. В гиалоплазме происходят анаэ­робное окисление, самосборка микротубул и микрофиламентов, транспорт субъединиц рибосом и РНК. Гиалоплазма является средой, обеспечивающей жизнедеятельность органелл.

Клеточные мембраны. Клеточные мембраны включают плазмолемму и внутриклеточные мембраны. Все мем­браны, в свою очередь, включают 60 % белков, 40 % липидов. Все мембраны обладают избирательной проницаемостью.

Внутриклеточные мембраны включают липиды: хо­лестерин, сфингомиелины, фосфолипиды. Молекулы липи­дов образуют 2 слоя: 1) гидрофильные головки липидов имеют заряд и обращены к поверхностям мембраны, 2) ги­дрофобные хвосты не имеют заряда и обращены к хвостам второго билипидного слоя. Толщина 10 % углеводов внутри­клеточных мембран составляет 6 нм.

Свойства билипидного слоя: обладает способностью к са­мосборке и к самовосстановлению, обладает текучестью.

Белки мембран состоят из аминокислот. Те участки моле­кул белков, где аминокислоты имеют заряд, обращены к го­ловкам молекул липидов, а где аминокислоты не имеют заря­да — к их хвостам.

По локализации в мембране белки делятся на интеграль­ные, полуинтегральные и примембранные. Интегральные белки погружаются в оба билипидных слоя, полуинтеграль­ные — только в один слой, примембранные — расположены на поверхности билипидного слоя.

Свойства белков мембран заключаются в их способности вращаться вокруг оси, изменять ось вращения и переме­щаться благодаря текучести билипидного слоя.

По функции белки делятся на транспортные, фермент­ные, структурные и рецепторные.

Плазмолемма. Плазмолемма отличается от внутрикле­точных мембран большей толщиной — 10 нм (толщина вну­триклеточных мембран составляет 6 нм). Толщина плазмолеммы увеличена за счет гликокаликса, состоящего из гликолипидов и гликопротеидов. Кнутри плазмолеммы прилежит субплазмолеммальный слой, состоящий из филаментов, включающих сократительные белки (актин, миозин, тропамиазин, альфа-актинин).

Функции плазмолеммы: 1) транспортная: 2) барьерная (отделяет содержимое клетки от окружающей ее среды); 3) рецепторная.

Транспортная функция. Хорошо известно, что через плазмолемму могут транспортироваться микромолекулы, макро­молекулы, микрочастицы и капельки воды. Микромолекулы (ионы, молекулы воды, аминокислоты) могут транспортиро­ваться под влиянием градиента концентрации и против гради­ента концентрации; при транспортировке против градиента концентрации затрачивается энергия, выделяемая при распа­де аденозинтрифосфата (АТФ), — активный транспорт, под влиянием градиента концентрации — пассивный транс­порт; для транспортировки натрия и калия имеется специаль­ная Na+, К+-аденозинтрифосфатаза (АТФаза).

Рецепторная функция. Рецепторы состоят из гликолипидов и гликопротеидов. Они могут быть диффузно рассеяны по поверхности цитолеммы или сконцентрированы в одном ме­сте. При помощи рецепторов клетки узнают друг друга и, объединяясь, формируют ткани; рецепторы захватывают гормоны, антигены, антитела, эритроциты барана и другие вещества; при захвате гормона активируется аденилатциклаза, под влиянием которой синтезируется сигнальная мо­лекула, т. е. циклический аденозинмонофосфат (цАМФ), кото­рая активирует ферменты клетки. Сигнальной молекулой мо­жет быть кальмодулин.

Поглощение клеткой твердых и жидких частиц называет­ся эндоцитозом. Эндоцитоз подразделяется на фагоцитоз и пиноцитоз.

Фагоцитоз — это поглощение макромолекул и макроча­стиц. Этот процесс складывается из адгезии частицы к плазмолемме, которая затем впячивается внутрь клетки, втяги­вая туда частицу, и, наконец, отшнуровывается. В результате образуется фагосома, состоящая из частицы, окруженной мембраной. Мембрана фагосомы формируется за счет плазмолеммы, т. е. при фагоцитозе происходит расходование плазмолеммы.

Пиноцитоз осуществляется аналогично фагоцитозу, толь­ко вместо плотной частицы захватывается капелька жидко­сти с растворенными в ней веществами, а захваченная ка­пелька называется пиноцитозным пузырьком.

Если через плазмолемму вещества поступают из клетки во внешнюю среду, то это называется экзоцитозом. При экзоцитозе секреторная гранула или остаточное тельце, окруженные мембраной, приближаются к внутренней поверхности плазмолеммы. Мембрана гранулы и плазмолемма сливаются, разрываются, и содержимое гранулы удаляется из клетки, а ее мембрана входит в состав плазмолеммы, т. е. при экзоцитозе плазмолемма как бы пополня­ется за счет мембран гранул.

Соединения клеток. Ткани, состоящие из клеток, не рас­падаются на отдельные клетки, потому что между клетками имеется сеть белков, обладающих адгезивными свойствами; кроме того, между клетками имеются межклеточные контак­ты (junctio intercellularis). Среди этих контактов различают: простые, плотные, адгезивные пояски, десмосомы, щелевидные, по типу замка и межнейрональные синапсы.

Простые контакты (junctio intercellularis simplex) харак­теризуются тем, что плазмолеммы соседних клеток прибли­жаются друг к другу на расстояние 15-20 нм, так что между клетками образуются межклеточные щели. Такие контакты обычно характерны для соединительнотканных клеток.

Плотные контакты, или замыкательные пластинки (zo­nula occludens), характеризуются тем, что цитолеммы клеток плотно прилежат друг к другу, закрывая межклеточные ще­ли; такие контакты характерны для железистой эпителиаль­ной ткани.

Адгезивные пояски (zonula adherens) — парные образова­ния в виде лент, опоясывающие апикальную часть клеток, характерны для однослойных эпителиев. Здесь клетки связа­ны друг с другом интегральными гликопротеидами, к кото­рым со стороны цитоплазмы той и другой клетки примыкает слой примембранных белков.

Десмосомы (desmosoma) характеризуются тем, что между цитолеммами двух клеток имеются слоистые структуры в пределах 0,5 мкм, а с внутренней поверхности плазмолемм напротив них имеется электронно-плотное вещество, прони­занное тончайшими фибриллами. Эти контакты характерны для клеток покровного эпителия. Их функция — механиче­ская связь между клетками.

Щелевидные контакты (nexus) характеризуются тем, что плазмолеммы смежных клеток приближаются друг к другу на расстояние 2-3 нм; в этом месте, занимающем всего около 1 мкм, имеются ионные канальцы, через которые между клетками происходит обмен ионами и молекулами воды. Такие контакты характерны для клеток гладкой мускулатуры и мышечных клеток сердечной мышцы.

Контакты по типу замка (junctio interdigitalis) характе­ризуются тем, что цитолемма одной клетки внедряется во впячивание другой клетки. Эти контакты выполняют функдию механической связи между клетками и характерны для клеток эпителиальной ткани.

Межнейроналъные синапсы (synapsis) связывают нервные клетки или их отростки друг с другом и служат для передачи нервного импульса от клетки к клетке в одном направлении (от пресинаптического полюса к постсинаптическому).

Органеллы клетки. Органеллы — постоянные структуры клетки, выполняющие определенные функции. Органеллы классифицируются на: 1) мембранные и немембранные и 2) постоянные и специальные.

К мембранным органеллам относятся эндоплазматическая сеть (гранулярная и гладкая), комплекс Гольджи, лизосомы, пероксисомы, митохондрии).

Гранулярная эндоплазматическая сеть (reticulum endoplasmaticum granulosum) представлена мембранами, сфор­мированными в цистерны, канальцы, везикулы, трубочки, покрытые рибосомами. Выполняет функции: синтез белков, транспортная. Гранулярная эндоплазматическая сеть (ЭПС), представленная параллельно расположенными цистернами, размещающимися в определенном месте, называется эргастоплазмой.

Если в клетке хорошо развита гранулярная ЭПС, то в ней активно синтезируются белки на экспорт, ферментные белки.

Гладкая эндоплазматическая сеть (reticulum endoplasmaticum nongranulosum) представлена канальцами, цистернами, везикулами, окруженными мембранами, ли­шенными рибосом. Выполняет функции: синтез углеводов, липидов, стероидных гомонов; дезинтоксикация ядовитых веществ, депонирование ионов Са2+ в цистернах и транспорт синтезированных веществ.

Комплекс Гольджи (complexus Golgiensis) представлен внутриклеточными мембранами, формирующими цистер­ны, везикулы, канальцы. Несколько параллельно располо­женных цистерн образуют диктиосомы, связанные друг с другом при помощи везикул, канальцев. В железистых клет­ках комплекс Гольджи располагается над ядром, в нервных клетках — вокруг ядра, в хромаффинных клетках мозгового вещества надпочечников — в виде колпачка около ядра; в не­которых клетках комплекс Гольджи диспергирован.

Функции комплекса Гольджи:

1) сегрегация (отделение от гиалоплазмы синтезированных на ЭПС продуктов). Если в образовавшихся в результате сегрегации везикулах содер­жится секрет, то эти везикулы называются секреторными гранулами, если лизосомальные ферменты — лизосомами;

2) выделительная;

3) восстановление цитолеммы (при выде­лении секреторных гранул их мембрана входит в состав плазмолеммы);

4) модификация (присоединение к поступившим из ЭПС продуктам углеводов и других веществ);

5) участие в формировании лизосом (на гранулярной ЭПС синтезируют­ся лизосомальные ферменты, которые при поступлении в комплекс Гольджи накапливаются в латеральных отделах цистерн, затем эти накопления в виде пузырьков отделяются от цистерн и превращаются в лизосомы).

Лизосомы (lysosomae) — везикулы, окруженные внутри­клеточной мембраной и содержащие протеолитические фер­менты — гидролазы. Маркерным ферментом лизосом являет­ся кислая фосфатаза. Лизосомы классифицируются на: 1) первичные; 2) вторичные и 3) третичные — остаточные тельца (corpusculum residuale). Первичные лизосомы образу­ются при участии гранулярной ЭПС и комплекса Гольджи (см. выше); их диаметр 0,3-0,4 мкм. Вторичные лизосомы об­разуются при слиянии первичных лизосом с фагосомами (фагоцитированными клеткой частицами). В результате взаимодействия ферментов с фагосомой происходит ее рас­щепление до мономеров, которые через мембрану лизосом транспортируются в гиалоплазму.

Если первичные лизосомы сливаются с органеллами клетки (рибосомами, митохондриями и др.), то они называ­ются аутофагосомами. Наличие в клетке большого количе­ства аутофагосом является признаком саморазрушения клетки — метаболический стресс, патология клетки, повреж­дение клетки.

Третичные лизосомы, или остаточные тельца, предста­вляют собой пищеварительные вакуоли, в которых остались продукты, не подвергшиеся разрушению лизосомальными ферментами. Они удаляются из клетки путем экзоцитоза.

Функции лизосом:

1) участие во внутриклеточном пище­варении; наличие в клетке большого количества лизосом яв­ляется признаком того, что эта клетка выполняет фагоцитар­ную функцию;

2) предотвращение гибели клетки. Если в клетке мало или нет лизосом, то она погибает от накопле­ния углеводов и липидов.

Пероксисомы (peroxisoma) представляют собой разновид­ность лизосом. Их диаметр составляет от 0,3 до 1,5 мкм. Фер­менты пероксисом окисляют аминокислоты, в результате че­го образуется перекись водорода, которая является ядом для клетки и расщепляется при помощи пероксидазы этих органелл. Маркерным ферментом пероксисом является каталаза.

Митохондрии (mitochondrie) имеют округлую, чаще вытя­нутую форму, их диаметр составляет 0,3, длина — 0,5 мкм и более. Они окружены двойной мембраной. Между мембра­нами имеется межмембранное пространство. От внутренней мембраны отходят кристы. Между кристами расположен матрикс. В матриксе выявляются тонкие нити (2-3 нм) — митохондриальные ДНК и мелкие гранулы (15-20 нм) — митохондриальные рибосомы.

Функции митохондрий. В митохондриях осуществляется: 1) синтез тринадцати видов митохондриальных белков; 2) об­разование АТФ из органических веществ и 3) фосфорилирование АДФ, в результате чего образуется АТФ.

К немембранным органеплам относятся рибосомы, клеточный центр и микротубулы. Рибосомы (ribosomae) об­разуются в ядрышке ядра, состоят из малой и большой су­бъединиц, имеют размеры 25 Ч 20 Ч 20 нм, включают рибосомные РНК и рибосомные белки. Функция — в рибосомах осуществляется синтез белков. Рибосомы могут либо распо­лагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопле­ния — полисомы. Если в клетке хорошо развита грануляр­ная ЭПС, то эта клетка относится к дифференцированным и синтезирует белки на «экспорт»; если в клетке слабо ра­звита гранулярная ЭПС и много свободных рибосом и поли­сом, то эта клетка малодифференцированная и синтезирует белки для внутреннего употребления.

Клеточный центр (centrosoma, cytocentrum), или диплосома, состоит из 2 центриолей. Одна из центриолей называ­ется материнской, другая — дочерней. Дочерняя центриоль располагается перпендикулярно по отношению к материн­ской. Каждая центриоль диплосомы имеет форму цилиндра шириной около 0,2 и длиной до 0,5 мкм. В состав стенки цен­триолей входят 9 триплетов микротубул (3x9+0). От микротубул отходят спутники (сателлиты). От диплосомы в разных направлениях идут микротубулы, которые в совокупности образуют центросферу.

Перед делением клетки центриоли клеточного центра рас­ходятся к ее полюсам. В таком случае каждая из центриолей становится материнской. К каждой материнской центриоли пристраивается новая, дочерняя, центриоль. Образование дочерней центриоли индуцируется материнской центриолью. Таким образом, в клетке перед делением имеется 2 кле­точных центра.

Функция клеточного центра проявляется в том, что в ин­терфазной клетке материнская центриоль индуцирует:

1) об­разование микротубул, формирующих цитоскелет клетки;

2) в конце интерфазы — образование дочерней центриоли. В делящейся клетке материнская центриоль индуцирует об­разование микротубул веретена деления.

Макротубулы в делящейся клетке входят в состав верете­на деления, в интерфазной клетке образуют цитоскелет, вхо­дят в состав ресничек, жгутиков и стенки центриолей. Внеш­ний диаметр микротубул равен 24 нм, внутренний — около 15 нм, толщина стенки 5 нм. В состав микротубул входят белки-тубулины, из которых образуются кольца, накладываю­щиеся друг на друга. В каждое кольцо входит по 13 субъеди­ниц. Самосборка микротубул происходит в гиалоплазме под влиянием материнской центриоли. При снижении темпера­туры ниже температуры тела самосборка микротрубочек прекращается, а уже образовавшиеся микротубулы начина­ют распадаться, клетка утрачивает свою обычную форму. Распад микротубул происходит и под влиянием колхицина.

Функции микротубул:

1) являются цитоскелетом, сохра­няя определенную форму клетки;

2) участвуют во внутрикле­точном движении;

3) участвуют в движении ресничек и жгу­тиков.

При внутриклеточном движении осуществляется перемещение в гиалоплазме вакуолей, митохондрий и др. Пе­ремещение происходит с участием белков-транслокаторов, которые прикрепляются к транспортируемым структурам, движущимся вдоль микротубул как по рельсам.

Фибриллярные структуры клетки (микрофиламенты, микрофибриллы)

Микрофиламенты (microfilamenti) — нитчатые структу­ры диаметром около 6 нм, состоят из сократительных белков актина, миозина, тропомиозина, альфа-актинина; распола­гаются под цитолеммой, образуя примембранный слой. При сокращении микрофиламентов цитолемма втягивается внутрь клетки при фагоцитозе, пиноцитозе и при телофазе во время разделения вновь образующихся клеток. Микрофила­менты участвуют в выбрасывании псевдоподий при амебо­видном движении клеток.

Функции микрофиламентов:

1) образуют цитоскелет;

2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивании цитолеммы при фагоцитозе);

3) участвуют в амебовидном движении клеток.

Микрофибриллы (microfibrillae) — нитчатые структуры диаметром около 10 нм, состоят из фибриллярных белков. Эти белки в клетках различных тканей неодинаковы. Фи­бриллярными белками в эпителиальных тканях являются ке­ратины, в фибробластах соединительной ткани — виментин, в клетках гладкой мышечной ткани — десмин.

Функциональное значение микрофибрилл (промежуточ­ных филаментов):

1) образуют скелет клетки;

2) по характеру фибриллярного белка можно определить, из какой ткани раз­вилась опухоль. Например, если в опухоли обнаружен кера­тин, значит, она образовалась из эпителиальной ткани; если обнаружен виментин — из соединительной ткани, и т. д.

Реснички (cilii) — специальные органеллы движения представляют собой выросты эпителиальных клеток высо­той 5-10 мкм, диаметром около 300 нм. В основе ресничек находится аксонема (filamenta axialis), состоящая из 9 пар пе­риферических и 1 пары центральных микротубул (2×9+2), прикрепляющихся к базальному тельцу (видоизмененной центриоли). Аксонема снаружи покрыта цитолеммой.

Функции ресничек: осуществляют движения колебатель­ные, круговые, крючкообразные. Благодаря движению рес­ничек эпителия дыхательных путей очищается поверхность слизистой оболочки от посторонних частиц и слизи. Однако под воздействием вдыхаемого курильщиками дыма реснич­ки склеиваются, и прекращается удаление микроорганиз­мов, частиц пыли и т. п. с поверхности слизистой оболочки трахеи и бронхов, в результате чего развивается хрониче­ский бронхит.

Жгутики (flagellum) — выросты клеток длиной до 150 мкм. В основе их также лежит аксонема, покрытая цито­леммой и прикрепляющаяся к базальному тельцу. Толщина аксонемы и базального тельца жгутиков и ресничек равна 200 нм. Жгутики содержатся в сперматозоидах.

Функции жгутиков: благодаря колебаниям жгутиков клет­ки движутся в жидкости.

Микроворсинки — выросты цитоплазмы клеток длиной около 1 мкм, диаметром около 100 нм; покрыты цитолеммой, в их основе имеются пучки микрофиламентов.

Функции микроворсинок:

1) увеличивают поверхность клеток;

2) в кишечном и почечном эпителии осуществляют всасывающую функцию.

Включения цитоплазмы (inclusiones cytoplasmae) — непостоянные компоненты клеток, возникающие и исчезаю­щие в зависимости от клеточного метаболизма.

Классификация включений. Включения делятся на тро­фические (белковые, углеводные, липидные), секреторные, экскреторные (продукты, подлежащие удалению из клетки и организма), пигментные, которые подразделяются на экзо­генные (частицы пыли, каротин, красители) и эндогенные (гемоглобин, миоглобин, липофусцин, гемосидерин, мела­нин, липохромы, билирубин).

ЛЕКЦИЯ 2

ЯДРО

Ядро (nucleus) имеет различную форму, чаще — округлую, овальную, реже — палочковидную или неправильную. Форма ядра иногда зависит от формы клетки. Так, например, у глад­ких миоцитов, которые имеют веретеновидную форму, ядро палочковидной формы. Обычно в круглых клетках или куби­ческих эпителиоцитах ядра имеют круглую форму. Напри­мер, лимфоциты крови имеют круглую форму и ядра у них обычно круглые. Но часто форма ядра не зависит от формы клетки. Например, в гранулоцитах крови, которые имеют круглую форму, ядро может иметь сегментированную или па­лочковидную форму. В нейтрофильных гранулоцитах крови женщины ядра могут иметь спутник (сателлит), который представляет собой половой хроматин, имеющий форму ба­рабанной палочки.

Что же такое ядро? Ядро — это система генетической де­терминации и регуляции синтеза белка. Что такое детерми­нация? Детерминация — это предопределение или, проще го­воря, программа, по которой развивается клетка.

Таким образом, ядро выполняет 2 функции:

1) хранение и передача наследственной информации дочерним клеткам;

2) регуляция синтеза белка.

Как осуществляется 1-я функция? Хранение наследствен­ной информации обеспечивается тем, что в ДНК хромосом имеются репарационные ферменты, которые восстанавли­вают хромосомы ядра после их повреждения. Как передается наследственная информация дочерним клеткам? Во время интерфазы к каждой молекуле ДНК пристраивается ее точная копия. Затем эти совершенно одинаковые копии ДНК равномерно распределяются между дочерними клетками при делении материнской клетки. Как же ядро участвует в регуляции синтеза белка? Синтез белка регулируется благо­даря тому, что на поверхности ДНК хромосом транскрибиру­ются все виды РНК: информационные, рибосомные и транс­портные, которые участвуют в синтезе белка на поверхности гранулярной ЭПС цитоплазмы клеток. В том случае, если уве­личивается количество всех этих РНК и рибосом, повышает­ся синтез белка. Если же в ядре вырабатывается малое коли­чество РНК, то синтез белка снижается. Так ядро участвует в регуляции белкового синтеза.

Строение ядра. Ядро включает хроматин (chromatinum), ядрышко (nucleolus), ядерную оболочку (nucleolemma) и ядерный сок (nucleoplasma). Хроматин интерфазного ядра называется так потому, что он способен воспринимать (окра­шиваться) основные красители. Что же такое хроматин? Хро­матин — это деспирализованные хромосомы, т. е. хромосо­мы, утратившие свою обычную форму. В том случае, если участок ДНК хромосомы наиболее диспергирован, то в этом месте образуется рыхлый хроматин, называемый эухроматином (euchromatinum), который обладает высокой активно­стью. В том случае, если участок ДНК хромосом не дисперги­рован, то он имеет уплотненную структуру. Такой хроматин называется гетерохроматином (heterochromatinum). Гетерохроматин не активен.

Почему же эухроматин активен, а гетерохроматин не ак­тивен? Активность эухроматина объясняется тем, что фи­бриллы ДНК хромосом при этом деспирализованы, т. е. гены, на поверхности которых происходит транскрипция РНК, от­крыты. Благодаря этому создаются условия для транскрип­ции РНК. В том случае, если ДНК хромосомы не деспирализована, то гены здесь закрыты, что затрудняет транскрипцию РНК с их поверхности. Следовательно, уменьшается количе­ство РНК и снижается синтез белка. Вот почему гетерохрома­тин не активен.

Фибриллы ДНК. И в состав митотических хромосом, и в хроматин интерфазного ядра входят нити — примитив­ные, или элементарные, фибриллы, которые состоят из ДНК в количестве 1 единицы, гистоновых и негистоновых белков, составляющих 1,3 единицы, и РНК, количество которых рав­но 0,2 единицы. Длина фибрилл может составлять от нес­кольких сот микрометров до 7 см. Суммарная длина фибрилл всех хромосом ядра человека составляет 170 см. В фибриллах имеются участки независимой репликации хромосом, называемые репликонами; их длина составляет 30 мкм, общее ко­личество в геноме человека — до 50 000.

Гистоновые белки образуют блоки, каждый из которых состоит из 8 молекул. Эти блоки называются нуклеосомами. На нуклеосомы навертывается фибрилла ДНК толщиной 5 нм, толщина нуклеосомы вместе с фибриллой составляет 10 нм. При дальнейшей спирализации этой уже спирализованной фибриллы ее толщина достигает 20 нм. Среди белков хроматина гистоновые белки составляют до 80 %. Их функ­ции: 1) особая укладка ДНК хромосом и 2) регуляция синтеза белка. Регуляция синтеза белка осуществляется через уклад­ку фибрилл ДНК хромосом. Если при укладке фибрилл ДНК имеет место резкая конденсация, то образуется плотный хро­матин (гетерохроматин), который, как уже известно, не акти­вен; если при укладке фибрилл они слабо спирализуются, то образуется активный эухроматин. Функция негистоновых белков заключается в том, что они формируют ядерный матрикс.

Количество РНК в составе хроматина составляет 0,2 еди­ницы. Это нити РНК транскрибированные с поверхности ге­нов ДНК. Они называются перихроматиновыми. Имеются РНК в виде гранул. Они могут быть интерхроматиновыми и перихроматиновыми; представляют собой соединение иРНК с белками и называются информосомами.

Ядрышки. Ядрышек в ядре — от 1 до 3. Формируются ядрышки на поверхности ядрышковых организаторов хро­мосом. Если ядрышковые организаторы сконцентрированы в одном месте, то в ядре будет только одно ядрышко, а если в нескольких местах — несколько ядрышек. В том месте, где находятся ядрышковые организаторы хромосом, имеется несколько сот генов, на поверхности которых транскрибиру­ются рибосомные РНК, из которых затем формируются су­бъединицы рибосом. Ядрышки состоят из 2 компонентов: 1) фибриллярного, расположенного в центре, и 2) гранулярного, локализованного на поверхности. Фибриллярный компо­нент — это фибриллы РНК, транскрибированные с поверхно­сти генов ядрышковых организаторов. Гранулярный компо­нент — это субъединицы рибосом. Субъединицы рибосом образуются в результате комплексирования (соединения) рибосомных белков с фибриллами рибосомных РНК. Рибосом­ные белки синтезируются на поверхности гранулярной ЭПС цитоплазмы и через ядерные поры поступают в ядро, где сое­диняются с рРНК. Образовавшиеся субъединицы рибосом через ядерные поры транспортируются в цитоплазму клет­ки, где объединяются в рибосомы, которые оседают на по­верхности гранулярной ЭПС или же образуют скопления в цитоплазме. Такие объединения рибосом в цитоплазме на­зываются полисомами. Таким образом, регуляцию синтеза белка в клетке осуществляет ядрышко, так как на рибосомах, образующихся в ядрышках, происходит синтез белков.

Ядрышки могут исчезать и в норме, и при патологии. Ког­да ядрышки исчезают в норме? В норме ядрышки исчезают в том случае, когда приходит период деления клетки и начи­нается спирализация фибрилл ДНК, в том числе и в области ядрышковых организаторов; тогда закрываются гены ядрышковых организаторов, на которых транскрибируются рРНК, прекращается транскрипция рРНК и ядрышко исчеза­ет. Это может быть и в том случае, если на клетку воздейству­ют какие-то токсические вещества. Перед исчезновением ядрышко расчленяется, т. е. обособляется внутренняя фи­бриллярная часть от внешней гранулярной части. Затем ис­чезает гранулярный компонент ядрышка, т. е. субъединицы рибосом, и исчезает фибриллярный компонент, т. е. молеку­лы рРНК. Таким образом, чем больше размеры ядрышек или больше их количество, тем интенсивнее образуются субъеди­ницы рибосом и повышается синтез белка в клетке.

Ядерная оболочка. Ядерная оболочка (nucleolemma) со­стоит из 2 мембран: наружной (membrana nuclearis externa) и внутренней (membrana nuclearis interna). Между мембрана­ми имеется пространство (cysterna nucleolemmae).

Наружная ядерная мембрана покрыта рибосомами и тесно связана с ЭПС. Нередко можно видеть, как наружная мембрана продолжается в канальцы гранулярной ЭПС.

Внутренняя ядерная мембрана связана с хроматином и фибриллярным ядерным компонентом. В нуклеолемме име­ются ядерные поры (pori nuclearis). В их состав входят поровые комплексы (complexus pori), в составе которых имеются: отверстие поры (annulus pori) диаметром около 90 мкм, грану­лы поры (granula pori) и мембрана поры (membrana pori).

Отверстие поры образуется в результате слияния на­ружной и внутренней мембран. Гранулы поры располагают­ся в 3 ряда, по 8 гранул в каждом ряду. Размеры гранул — около 25 нм. Гранулы каждого ряда располагаются по пери­ферии порового отверстия. Наружный слой гранул обращен в сторону цитоплазмы, внутренний слой — в сторону карио­плазмы, а третий слой размещен между наружным и внутренним. От гранул отходят фибриллы. Эти фибриллы сое­диняются с центральной гранулой, образуя мембрану поры (membrana pori).

Функция ядерных пор заключается в том, что через них происходит обмен веществ между кариоплазмой и цитоплаз­мой клетки. Чем больше пор в нуклеолемме, тем активнее ядро. Если активность ядра снижена, то количество пор уме­ньшается; если синтетическая активность ядра близка к ну­лю, то поры в ядре отсутствуют. Например, поры отсутствуют в кариолемме ядра сперматозоида.

При различных неблагоприятных воздействиях в ядре мо­гут наблюдаться патологические изменения: пикноз — коагу­ляция хроматина ядра, кариорексис — распад ядра на части, может быть отечность перинуклеарного пространства.

КЛЕТОЧНЫЙ ЦИКЛ

Клеточный цикл (cyclus cellularis) — это период от одного до другого деления клетки или же период от деления клетки до ее гибели. Клеточный цикл разделяется на 4 периода.

Пер­вый период — митотический;

2-й— постмитотический, или пресинтетический, он обозначается буквой G1;

3-й — синте­тический, он обозначается буквой S;

4-й — постсинтетиче­ский, или премитотический, он обозначается буквой G2,

а митотический период — буквой М.

После митоза наступает очередной период G1. В этот период дочерняя клетка по сво­ей массе в 2 раза меньше материнской клетки. В этой клетке в 2 раза меньше белка, ДНК и хромосом, т. е. в норме хромо­сом в ней должно быть 2п и ДНК — 2с.

Что же происходит в периоде G1? В это время на поверх­ности ДНК происходит транскрипция РНК, которые прини­мают участие в синтезе белков. За счет белков увеличивает­ся масса дочерней клетки. В это время синтезируются пред­шественники ДНК и ферменты, участвующие в синтезе ДНК и предшественников ДНК. Основные процессы в пе­риоде G1 — синтез белков и рецепторов клетки. Затем наступает период S. В течение этого периода происходит репликация ДНК хромосом. В результате этого к концу пе­риода S содержание ДНК составляет 4с. Но хромосом будет 2п, хотя фактически их тоже будет 4п, но ДНК хромосом в этот период так взаимно переплетены, что каждая се­стринская хромосома в материнской хромосоме пока не видна. По мере того как в результате синтеза ДНК увеличи­вается их количество и повышается транскрипция рибосомных, информационных и транспортных РНК, естествен­но возрастает и синтез белков. В это время может происхо­дить удвоение центриолей в клетках. Таким образом, клетка из периода S вступает в период G2. В начале периода G2 про­должается активный процесс транскрипции различных РНК и процесс синтеза белков, главным образом белков-тубулинов, которые необходимы для веретена деления. Может про­исходить удвоение центриолей. В митохондриях интенсивно синтезируется АТФ, которая является источником энергии, а энергия необходима для митотического деления клетки. После периода G2 клетка вступает в митотический период.

Некоторые клетки могут выходить из клеточного цикла. Выход клетки из клеточного цикла обозначается буквой G0. Клетка, вошедшая в этот период, утрачивает способность к митозу. Причем одни клетки утрачивают способность к ми­тозу временно, другие — постоянно.

В том случае, если клетка временно утрачивает способ­ность к митотическому делению, она подвергается началь­ной дифференцировке. При этом дифференцированная клет­ка специализируется для выполнения определенной функ­ции. После начальной дифференцировки эта клетка способ­на возвратиться в клеточный цикл и вступить в период Gj и после прохождения периода S и периода G2 подвергнуться митотическому делению.

Где в организме находятся клетки в периоде G0? Такие клетки находятся в печени. Но в случае, если печень повреж­дена или часть ее удалена оперативным путем, тогда все клетки, подвергшиеся начальной дифференцировке, возвра­щаются в клеточный цикл, и за счет их деления происходит быстрое восстановление паренхимных клеток печени.

Стволовые клетки также находятся в периоде G0, но, ког­да стволовая клетка начинает делиться, она проходит все пе­риоды интерфазы: G1, S, G2.

Те клетки, которые окончательно утрачивают способность к митотическому делению, подвергаются сначала начальной дифференцировке и выполняют определенные функции, а затем окончательной дифференцировке. При окончатель­ной дифференцировке клетка не может возвратиться в кле­точный цикл и в конечном итоге погибает. Где в организме находятся такие клетки? Во-первых, это клетки крови. Гранулоциты крови, подвергшиеся дифференцировке, функциони­руют в течение 8 суток, а затем погибают. Эритроциты крови функционируют в течение 120 суток, потом также погибают (в селезенке). Во-вторых, это клетки эпидермиса кожи. Клет­ки эпидермиса подвергаются сначала начальной, потом окончательной дифференцировке, в результате которой они превращаются в роговые чешуйки, которые затем слущиваются с поверхности эпидермиса. В эпидермисе кожи клетки могут находиться в периоде G0, периоде G1, периоде G2 и в периоде S.

Ткани с часто делящимися клетками поражаются сильнее тканей с редко делящимися клетками, потому что ряд хими­ческих и физических факторов разрушают микротубулы ве­ретена деления.

МИТОЗ

Митоз принципиально отличается от прямого деления или амитоза тем, что во время митоза происходит равномерное ра­спределение хромосомного материала между дочерними клет­ками. Митоз делится на 4 фазы. 1-я фаза называется профа­зой, 2-я — метафазой, 3-я — анафазой, 4-я — телофазой.

Если в клетке имеется половинный (гаплоидный) набор хромосом, составляющий 23 хромосомы (половые клетки), то такой набор обозначается символом In хромосом и 1с ДНК, если диплоидный — 2п хромосом и 2с ДНК (соматические клетки сразу после митотического деления), анеуплоидный набор хромосом — в аномальных клетках.

Профаза. Профаза делится на раннюю и позднюю. Во время ранней профазы происходит спирализация хромо­сом, и они становятся видны в виде тонких нитей и образуют плотный клубок, т. е. образуется фигура плотного клубка. При наступлении поздней профазы хромосомы еще больше спирализуются, в результате чего закрываются гены ядрышковых организаторов хромосом. Поэтому прекращаются транскрипция рРНК и образование субъединиц хромосом, и ядрышко исчезает. Одновременно с этим происходит фраг­ментация ядерной оболочки. Фрагменты ядерной оболочки свертываются в небольшие вакуоли. В цитоплазме уменьша­ется количество гранулярной ЭПС. Цистерны гранулярной ЭПС фрагментируются на более мелкие структуры. Количе­ство рибосом на поверхности мембран ЭПС резко уменьша­ется. Это приводит к уменьшению синтеза белков на 75 %. К этому моменту происходит удвоение клеточного центра. Образовавшиеся 2 клеточных центра начинают расходиться к полюсам. Каждый из вновь образовавшихся клеточных центров состоит из 2 центриолей: материнской и дочерней.

С участием клеточных центров начинает формироваться ве­ретено деления, которое состоит из микротубул. Хромосомы продолжают спирализоваться, и в результате образуется рыхлый клубок хромосом, расположенный в цитоплазме. Та­ким образом, поздняя профаза характеризуется рыхлым клубком хромосом.

Метафаза. Во время метафазы становятся видимыми хроматиды материнских хромосом. Материнские хромосомы выстраиваются в плоскости экватора. Если смотреть на эти хромосомы со стороны экватора клетки, то они воспринима­ются как экваториальная пластинка (lamina equatorialis). В том случае, если смотреть на эту же пластинку со стороны полюса, то она воспринимается как материнская звезда (monastr). Во время метафазы завершается формирование веретена деления. В веретене деления видны 2 разновидно­сти микротубул. Одни микротубулы формируются от клеточ­ного центра, т. е. от центриоли, и называются центриолярными микротубулами (microtubuli cenriolaris). Другие микротубулы начинают формироваться от кинетохор хромо­сом. Что такое кинетохоры? В области первичных перетяжек хромосом имеются так называемые кинетохоры. Эти кинето­хоры обладают способностью индуцировать самосборку ми­кротубул. Вот отсюда и начинаются микротубулы, которые растут в сторону клеточных центров. Таким образом, концы кинетохорных микротубул заходят между концами центрио- лярных микротубул.

Анафаза. Во время анафазы происходит одновременное отделение дочерних хромосом (хроматид), которые начинают двигаться одни к одному, другие к другому полюсу. При этом появляется двойная звезда, т. е. 2 дочерние звезды (diastr). Движение звезд осуществляется благодаря веретену деления и тому, что сами полюса клетки несколько удаляются друг от друга.

Механизм, движения дочерних звезд. Это движение обеспечивается тем, что концы кинетохорных микротубул скользят вдоль концов центриолярных микротубул и тянут хроматиды дочерних звезд в сторону полюсов.

Телофаза. Во время телофазы происходит остановка движения дочерних звезд и начинают формироваться ядра. Хромосомы подвергаются деспирализации, вокруг хромо­сом начинает формироваться ядерная оболочка (нуклеолемма). Поскольку деспирализации подвергаются фибрил­лы ДНК хромосом, постольку начинается транскрипция

РНК на открывшихся генах. Так как происходит деспирализация фибрилл ДНК хромосом, в области ядрышковых орга­низаторов начинают транскрибироваться рРНК в виде тон­ких нитей, т. е. формируется фибриллярный аппарат ядрышка. Затем к фибриллам рРНК транспортируются ри- босомные белки, которые комплексируются с рРНК, в ре­зультате чего формируются субъединицы рибосом, т. е. об­разуется гранулярный компонент ядрышка. Это происхо­дит уже в поздней телофазе. Цитотомия, т. е. образование перетяжки. При образовании перетяжки по экватору проис­ходит впячивание цитолеммы. Механизм впячивания сле­дующий. По экватору располагаются тонофиламенты, со­стоящие из сократительных белков. Вот эти тонофиламен­ты и втягивают цитолемму. Затем происходит отделение цитолеммы одной дочерней клетки от другой такой же до­черней клетки. Так, в результате митоза, формируются но­вые дочерние клетки. Дочерние клетки в 2 раза меньше по массе в сравнении с материнской. В них также меньше ко­личество ДНК — соответствует 2с, и вдвое меньше количе­ство хромосом — соответствует 2п. Так, митотическим деле­нием, заканчивается клеточный цикл.

Биологическое значение митоза заключается в том, что за счет деления происходит рост организма, физиологическая и репаративная регенерация клеток, тканей и органов.

Наши рекомендации