Методы изучения генетики человека
Все генетические законы и закономерности универсальны и приложимы к человеку. Однако изучение генетики человека имеет ряд особенностей. Во-первых, нельзя использовать гибридологический метод, так как экспериментальное скрещивание людей невозможно. Во-вторых, у человека медленная смена поколений, и пронаблюдать характер наследования признака сложно. В-третьих, у человека очень малое число потомков в одной семье, что не дает статистически достоверного результата. Кроме того, в отличие от классических генетических объектов у человека большое число хромосом и много групп сцепления. Поэтому для изучения генетики человека используются специфические методы, а характер наследования того или иного признака определяется на больших человеческих популяциях.
Основные методы изучения генетики человека:
- генеалогический;
- близнецовый;
- цитогенетический метод;
- биохимический метод;
- популяционно-статистический метод;
- молекулярно-генетические методы.
Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Впервые этот метод был предложен Ф. Гальтоном в 1865 г. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.
Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Этот метод в 1876 г. предложил английский исследователь Ф. Гальтон для разграничения влияния наследственности и среды на развитие различных признаков у человека.
Цитогенетический метод заключается в микроскопическом исследовании структуры хромосом и их количества у здоровых и больных людей. Из трех типов мутаций под микроскопом могут обнаруживаться лишь хромосомные и геномные мутации. Наиболее простым методом является экспресс-диагностика – исследование количества половых хромосом по Х-хроматину. В норме у женщин одна Х-хромосома в клетках находится в виде тельца хроматина, а у мужчин такое тельце отсутствует. При трисомии по половой паре у женщин наблюдаются два тельца, а у мужчин – одно. Для идентификации трисомии по другим парам исследуется кариотип соматических клеток и составляется идиограмма, которая сравнивается со стандартной.
Биохимический метод основан на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее.
Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.
Молекулярно-генетические методы. В последние годы уровень развития современной генетики позволяет широко использовать молекулярные методы для изучения молекулярных основ наследственности и изменчивости организмов, химической и физико-химической структуры генетического материала, его функций.