Утилизация органических азотсодержащих веществ

В результате этого разложение белков сопровождается выделением побочных продуктов:

аммиака (при дезаминировании аминокислот); сероводорода при использовании серосодержащих аминокислот (цистин, цистеин, метионин), индола при утилизации триптофана. Обнаружение подобных

продуктов свидетельствует об использовании вышеперечисленных соединений.

Определение образования индола1 – 2 мл реактива Эрлиха (парадиметиламинобензальдегид, раство-

ренный в этаноле и соляной кислоте). При положительной реакции образуется красное кольцо на границе раздела со средой. В качестве индикатора могут выступать и фильтровальные бумажки, пропитанные насыщенным раствором щавелевой кислоты, которые помещают под пробку и которые изменяют цвет (от розового до красного) при образовании индола.

Определение образования сероводородатакже проводят с использованием индикаторных бумажек, пропитанных раствором уксуснокислого свинца. почернение бумаги = сульфид свинца.

Определение образования аммиакаиндикаторной бумажки, пропитанной реактивом Крупа. Об образовании аммиака свидетельствует покраснение бумаги.

Билет 17.

  1. Рост клеток и популяций, основные параметры роста.

Утилизация органических азотсодержащих веществ - student2.ru Утилизация органических азотсодержащих веществ - student2.ru Под ростом понимают согласованное увеличение количества всех химических компонентов, формирующих клеточные структуры. В период сбалансированного роста удвоение биомассы сопровождается удвоением всех других учитываемых параметров популяции, например количества белка, ДНК, РНК и внутриклеточной воды. В условиях сбалансированного роста легко определить величину скорости роста бактериальной популяции в каждый момент времени, если из-мерить прирост любого компонента клетки по отношению к его исходному количеству. Коэффициент пропорциональности называют удельной скоростью роста (μ). где N – число клеток в единице объема; Х – масса клеток в единице объема; t – время. Зная удельную скорость роста, можно определить время генерации (g – время, необходимое для удвоения числа клеток популяции в часах или минутах).

Если рост клеток в культуре ограничен количеством внесенного в питательную среду компонента, то между его начальной концентрацией и полученной биомассой клеток существует постоянная линейная зависимость (при условии ограничения роста только по одному параметру).

Утилизация органических азотсодержащих веществ - student2.ru Масса клеток, образованная на единицу использованного компонента среды, представляет собой величину, которую называют экономическим коэффициентом (или выходом биомассы) – Y. Эту величину определяют по уравнению где Х – масса сухого вещества клеток (г/мл культуры), вступившей в стационарную фазу роста; Х0 – масса сухого вещества клеток в 1 мл среды сразу после инокуляции среды; (Х – Х0) – урожай бактериальной культуры (урожай зависит от количества и природы используемых питательных веществ, а также от условий культивирования); (S0 – S) – количество потребленного субстрата.

В лабораторных и промышленных условиях используют два основных способа культивирования микроорганизмов: периодическое (статическое) и непрерывное (проточное).

Рост бактерий в периодической культуре происходит до тех пор, пока содержание какого-нибудь из необходимых им компонентов питательной среды не достигнет минимума, после чего рост прекращается. Несколько фаз роста, сменяющих друг друга: начальную (или лаг-) фазу; экспонен-

циальную, или логарифмическую, фазу; стационарную фазу; фазу отмирания.

Лаг-фаза, или фаза задержанного роста, охватывает промежуток времени между инокуляцией бактерий и достижением ими максимальной скорости деления. Продолжительность фазы определяется факторами: • Начальными условиями культивирования вносимого посевного материала.

• Возрастом посевного материала.

Фаза экспоненциального роста характеризуется постоянной максимальной скоростью деления клеток и скоростью роста. E. coli при 37 С делятся примерно каждые 20 мин.

Стационарная фаза наступает тогда, когда число жизнеспособных клеток достигает максимума и не увеличивается, так как скорость размножения бактерий равна скорости их отмирания. В стационарную фазу роста поведение клеток может регулировать апоптоз. У бактерий E. Coli он осуществляется особым опероном maz, представленным двумя генами: mazE и mazF. Продукт mazF – стабильный цитотоксический белок-киллер, а продукт mazE – нестабильн. белок МazE, разрушающий белок-киллер.

В фазе отмирания происходит экспоненциальное снижение числа живых клеток.

В условиях непрерывного (проточного) культивирования в сосуд, содержащий популяцию бактерий, подается свежая питательная среда и из него одновременно удаляется часть среды с клетками микроорганизмов. Хемостат состоит из сосуда-культиватора, в который с заданной постоянной скоростью поступает питательная среда. Примером хемостата в природе служит рубец жвачных животных. Турбидостат представляет собой ферментер, в котором поддерживается заданная плотность клеток за счет определения оптической плотности среды культивирования. Биореакторы, или ферментеры в пром.Культуры, в которых все клетки находятся на одинаковой стадии клеточного цикла и делятся одновременно, называют синхронными.

  1. Арзибактерии. Основные группы, свойства, применение.

Впервые стали известны в 1977 г. благодаря работам американских ученых К. Везе и Г. Фокса по изучению молекулярно-биохимических свойств биополимеров клеток разных видов бактерий.

1. Их клеточная стенка не имеет пептидогликана муреина, вместо ко-торого в состав клеточной стенки входят кислые полисахариды, белки или псевдомуреин, не содержащий в отличие от муреина мурамовой кислоты, а в пептидных мостиках – D-аминокислот. Вместо ацетилмурамовой кислоты в состав муреина входит ацетилталозаминуроновая кислота, что определило устойчивость архебактерий к антибиотикам, нарушающим синтез клеточных стенок у эубактерий, – пенициллину, ампициллину.

2. Мембраны архебактерий не содержат в составе липидов сложных эфиров глицерина и жирных кислот, а представлены особыми бифитанильными глицериновыми эфирами, образованными путем конденсации глицерина с терпеноидными спиртами.

3. В тРНК архебактерий изменена общая для всех других организмов петля тимин–псевдоуридин–цитидин, в которой вместо тимина присутствуют другие основания.

4. Наличие в генах, кодирующих тРНК, интронов, которые имеются только в эукариотических геномах, но отсутствуют у большинства эубактерий.

5. Наличие в геноме архебактерий многократно повторяющихся последовательностей, что характерно для хромосомной ДНК эукариот. В области нуклеоида у архебактерий содержатся белки гистоны.

6. Архебактерии имеют более сложную структуру аппаратов трансляции и транскрипции. ДНК-зависимая РНК-полимераза, осуществляющая процесс транскрипции у архебактерий, состоит из 9–12 субъединиц, у эубактерий – из 4–8 субъединиц. РНК-полимераза архебактерий, подобно таковым у эукариот, не ингибируются рифампицином, их активность стимулируется силибином.

7. Рибосомы архебактерий содержат относительно больше белков, чем рибосомы эубактерий, причем они представлены более кислыми формами по сравнению с белками рибосом эубактерий. Кроме того, процесс биосинтеза белков у архебактерий не ингибируется такими антибиотиками, как хлорамфеникол и стрептомицин.

8. Особенностью конструктивного метаболизма архебактерий является отсутствие фиксации СО2 в цикле Кальвина. Основным путем автотрофной его фиксации является восстановительный путь карбоновых кислот в различных его модификациях, присущий и некоторым эубактериям.

9. Архебактерии неспособны использовать сложные высокомолекулярные соединения. Среди них не обнаружено активных продуцентов гидролитических ферментов, что, возможно, является одной из причин отсутствия патогенных и паразитических форм.

10. Некоторые архебактерии, в частности метаногенные, синтезируют уникальный набор коферментов, не встречающийся у других организмов

11. Архебактерии занимают необычные, часто экстремальные по условиям окружающей среды высокоспециализированные экологические ниши.

12. Морфология клеток архебактерий беднее, чем эубактерий. Преобладают сферические и цилиндрические клетки, а также необычные плоские клетки, имеющие вид пластинок и коробочек разнообразной геометрической формы, сходные с кусочками битого стекла.

Метаногенные бактерии – самая многочисленная группа, являющаяся облигатными анаэробами. Большинство неподвижны, подвижные имеют полярные жгутики. Источниками энергии служат процессы окисления молекулярного водорода, оксида углерода, метанола, муравьиной и уксусной кислот, акцептором электронов является углекислый газ. В природных средах метаногенные бактерии развиваются в ассоциации с другими микроорганизмами, выполняя функцию конечного звена в трофической цепи – превращают продукты брожения этих микроорганизмов в метан. Основные места обитания: торфяные болота, ил на дне водоемов, очистные сооружения сточных вод, пищеварительный тракт животных. Представители метаногенных бактерий входят в роды Methanobacterium, Methanosarcina, Methanospirillum.

Анаэробные серовосстанавливающие бактерии представлены одним родом Archaeoglobus, который состоит из двух видов: A. fulgidus (типовой вид) и A. profundus. Это облигатные анаэробы и экстремальные термофилы. Бактерии рода Archaeoglobus – грамотрицательные кокковидные клетки неправильной формы, часто треугольные, одиночные или в парах, со жгутиками (монополярные политрихи) или без них. При освещении светом с длиной волны 420 нм обнаруживают голубовато-зеленую флуоресценцию. На агаризованной среде формируют зеленовато-черные гладкие колонии диаметром 1–2 мм. Способны к хемолитотрофному или хемоорганотрофному росту. Основная форма энергетического метаболизма – анаэробное дыхание (диссимиляционная сульфатредукция). Донорами электронов являются формиат, лактат, глюкоза, крахмал, белки и молекулярный водород; конечными акцепторами электронов – сульфат, сульфит и тиосульфат (но не молекулярная сера). Особенностью бактерий рода Archaeoglobus является способность в небольшом количестве образовывать метан. \

Основное местообитание серовосстанавливающих архебактерий – мелководные и глубоководные морские гидротермальные источники, в которых они вызывают восстановление соединений серы.

Экстремальные термофилы, метаболизирующие молекулярную серу – грамотрицательные бактерии разной морфологии: кокки, палочки, диски, нити или клетки неправильной дольчатой формы. Клеточные стенки у этих бактерий состоят из гликопротеиновых или белковых субъединиц. Цитоплазматические мембраны многослойные, содержат липиды, на основе тетраэфиров глицерина.

Экстремальные термофилы, метаболизирующие молекулярную серу, подразделяются на три порядка, четыре семейства и включают девять родов. Все представители объединены в одну группу благодаря тому, что их энергетический метаболизм связан с метаболизмом молекулярной серы. Облигатно аэробные бактерии (например, бактерии рода Sulfolobus); строгие анаэробы (например, бактерии ро-

дов Thermococcales и Thermoproteales); факультативные анаэробы (например, бактерии рода Acidianus).

Являются аборигенами высокотермальных кислых источников и грунтов в зонах вулканического происхождения. Кроме того, бактерии рода Pyrodictium выделяют из подводных морских горяч.источн.

Бактерии вида Sulfolobus brierley, способные выщелачивать металлы

Термоацидофильные микоплазмы представлены единственным видом Thermoplasma acidophilum. В отличие от других архебактерий, эти бактерии не имеют клеточной стенки. Клетки окружены трехслойной мембраной, толщиной около 7 нм, могут быть подвижными и обладать жгутиками.

Гетеротрофы со сложными пищевыми потребностями. Хемоорганотрофы, факультативные анаэробы. Энергию получают как за счет аэробного дыхания, так и за счет брожения. Облигатные термофилы и облигатные ацидофилы. Естественным местообитанием их служат саморазогревающиеся отходы каменного угля и кислые термальные источники.

В группу экстремально галофильных бактерий входят бактерии с разной морфологией клеток.

Галобактерии распространены там, где есть: высокое содержание NaCl и других необходимых ионов,

. У представителей рода Halobacterium клеточная стенка построена из регулярно расположенных гексагональных субъединиц, состоящих в основном из гликопротеинов. Клеточная стенка галобактерий рода Halococcus имеет гетерополисахаридную природу.

Цитоплазматическая мембрана галобактерий содержит липиды, в молекулах которых глицерин связан не с остатками жирных кислот, а с С20- терпеноидным спиртом – фитанолом. Включают много каротиноидных пигментов (основной – бактериоруберин)против избыточной радиации,.

При недостатке в среде молекулярного кислорода в цитоплазматической мембране галобактерий индуцируется синтез хромопротеина – бактериородопсина, белка, соединенного ковалентной связью с каротиноидом ретиналем.Хромопротеин откладывается в виде отдельных пурпурных областей

(бляшек) красного цвета на цитоплазматической мембране.

Экстремальные галофилы имеют сложные пищевые потребности. Метаболизм глюкозы осуществляется по модифицированному пути Энтнера Дудорова. Этот путь отличается у галобактерий тем, что глю-

коза без фосфорилирования окисляется в глюконовую кислоту. Последняя превращается в 2-кето-3-дезоксиглюконовую кислоту, которая расщепляется на два С3-фрагмента: пировиноградную кислоту и глицериновый альдегид. Из глицеринового альдегида в результате нескольких ферментативных реакций также образуется ПВК. Дальнейшее окисление происходит в замкнутом цикле Кребса.

Утилизация органических азотсодержащих веществ - student2.ru Основной способ получения энергии экстремальными галофилами аэробное дыхание. Использование световой энергии для создания трансмембр. градиента протонов происходит с участ. бактериородопсина и не связано с переносом электронов по цепи переносчиков. Шиффово основание в темноте находится в протонированной форме. Поглощение кванта света бактериородопсином вызывает изменение конформации ретиналя и приводит к отщеплению Н+ от Шиффова основания. Протон, переходит во внеклеточное пространство, а Н+, протонирующий Шиффово основание, поглощается из цитоплазмы.

В результате работы циклического механизма, получившего название бактериородопсиновой протонной помпы, при освещении по разные стороны мембраны возникает градиент концентрации Н+, достигающий 200 мВ. Разрядка протонного градиента с помощью Н+-АТФ- синтазы приводит к синтезу АТФ.

  1. Простые и сложные методы окрашивания. Примеры.

красителей, которые можно разделить на: • позитивные (метиленовый синий, фуксин) и негативные (нигрозин). Позитивными называются красители, окрашивающие микроорганизмы и другие находящиеся на стекле фиксированные объекты, негативными – красители, заполняющие пространство, окружающее микроорганизмы, в результате чего последние становятся видимыми в виде силуэтов на фоне красителя;• кислые (эозин, конго красный) и щелочные (гематоксилин, толуидиновый синий, азур). Кислые красители связываются с веществами, имеющими щелочную реакцию (например, цитоплазматическими белками), щелочные – связываются с базофильными (кислыми) компонентами клеток (нуклеиновыми кислотами, рибосомами).Способность клеток воспринимать различные красители отражаетих тинкториальныесвойства. Это определяется стр-рой и сост. клеточной стенки.

Простыми методами окрашиванияназывают окрашивание препаратов каким-либо одним красителем. Чаще всего при этом используется фуксин, генциановый фиолетовый, метиленовый синий. В случае

использования негативных красителей среда, в которой находятся микроорганизмы, становится полупрозрачной; в результате клетки, в которые краситель не проникает, выглядят как светлые частицы на равномерно окрашенном фоне. Некоторые микроорганизмы, например спирохеты, плохо выявляемые с помощью позитивных красителей, легко выявляются при окрашивании негативными красителями.

При сложных методахокрашивания на один и тот же препарат воздействуют несколькими красящими веществами, одно из которых называется основным, другие – дополнительными. Кроме красителей

используются различные обесцвечивающие вещества: спирты, кислоты, ацетон и др. С помощью сложных методов окрашивания выявляют цитологические особенности клеток микроорганизмов Окраска по методу Грамаявляется самым универсальным из сложных методов окраски. Окраска положена в основу дифференциации бактерий и отражает способность клеток воспринимать и удержи-

вать внутри клетки красящий комплекс генцианового фиолетового и иода либо терять его после обработки спиртом. Соответственно выделяют грампол. (Bacillus, Clostridium, Staphylococcus, Sarcina, Streptococcus,Lactobacillus) и грамотр. (Escherichia,Pseudomonas, Erwinia, Neisseria, Rickettsiа)

Наши рекомендации