Глава 3. строение глазного яблока 3 страница

Ультраструктурно боуменова оболочка со­стоит из беспорядочно распределенных и плот­но упакованных коллагеновых фибрилл диамет­ром 14—27 нм и длиной 240—270 нм. Перио­дичность поперечной исчерченности волокон равняется 64 нм. Основное вещество роговой оболочки имеет такой же состав, как и основ­ное вещество стромы. Оболочка Боумена состо­ит из коллагена I типа, основного структурного компонента роговицы и склеры, а также кол­лагенов V, VI, III и VIIтипов [695, 768, 878]. Ряд исследователей выявили коллаген IVтипа [472]. Передняя поверхность боуменовой обо­лочки, граничащая с lamina vitrea базальной мембраны эпителиальных клеток, гладкая, а задняя поверхность — неровная [603]. При рас­тровой микроскопии она выглядит волнистой и содержит поры диаметром 0,5—1,5 мкм. Через эти поры к эпителиальным клеткам проникают немиелинизированные нервные волокна [603].

Боуменова оболочка устойчива к поверж-дению и довольно длительно сохраняется при воспалении. Если же она разрушена, регене­рации не наступает и это место замещается волокнистой тканью [273].

В норме боуменова оболочка не содержит клеток. Первым признаком развития патоло­гического состояния роговой оболочки являет­ся появление в этой зоне клеток. Правда, необ­ходимо отметить, что через поры в боуменовой оболочке и в норме возможна миграция к эпи-телиоцитам и клеток иного происхождения.

Собственное вещество (строма) роговицы(substantia propria corneae). Строма состав­ляет 90% толщины роговой оболочки (450 мкм в центральных участках) и складывается из трех компонентов: коллагеновых пластин, кле­ток и основного вещества (рис. 3.2.3, 3.2.4). В соответствии с гистологической номенкла­турой строма представляет собой плотную оформленную соединительную ткань.

Существует две теории, объясняющие про­зрачность стромы роговицы. Первая предложе-



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА



глава 3. строение глазного яблока 3 страница - student2.ru

 

на Maurice [712] и сводится к предположению о том, что роговичные коллагеновые волокна формируют решетчатую структуру, уменьшаю­щую светорассеивание в результате общей ин­терференции от каждой фибриллы. До тех пор, пока фибриллы расположены в решетке равно­мерно и промежуток между ними меньше дли­ны волны видимого света (400—700 нм), рого­вица остается прозрачной. Когда же расстоя­ние между фибриллами увеличивается, общая интерференция уже не имеет места и роговица мутнеет. Goldman, Benedek [382] утверждают, что роговица прозрачная вследствие того, что фибриллы довольно малы по отношению к дли­не волны света и не преломляют свет при про­хождении через них до тех пор, пока они не больше половины длины волны света.

В настоящее время прозрачность стромы роговой оболочки связывают с рядом структур­ных ее особенностей и химическим составом. Помимо вышеприведенных причин возможной прозрачности стромы роговицы, приводят и ряд других причин. Прежде всего, определенное значение имеет исключительно строгая ориен­тация коллагеновых пластин, что показано при помощи метода дифракции [243, 782].

Имеет также значение определенное соотно­шение между коллагеном и матричными белка­ми (протеогликанами) [728, 983]. Нарушение этого взаимоотношения приводит к помутнению роговицы.

Необходимо отметить, что факт быстрого обратимого помутнения роговицы, которое име­ет место при повышении, а затем снижении внутриглазного давления, очень сложно объяс­нить с позиций указанных двух теорий. Поэто­му вопрос о причинах прозрачности стромы до сих пор остается открытым.

Стромальные пластины.Каждая стромаль-ная пластина состоит из пучка коллагеновых волокон, ориентированных параллельно друг другу (рис. 3.2.7). Фибриллы обладают типич­ной исчерченностью, равной 64 нм и характер­ной для коллагановых волокон других типов соединительной ткани. Коллагеновые волокна состоят, в основном, из коллагена I типа, хотя выявлен и коллаген III,VI и XIIтипов [72, 472, 695, 698, 768, 878].

Отмечается уникальная однородность диа­метра фибрилл, хотя и выявляется неболь­шое увеличение их диаметра в зависимости от глубины стромальной пластины. Фибриллы поверхностных слоев имеют диаметр 27 нм, а задних — 35 нм. Некоторые авторы не нашли подобных различий. Выявлено, что диаметр фибрилл передних и задних стромальных плас­тин одинаков и равен 22,0 ±1,0 нм. Расстоя­ние между фибриллами также примерно оди­наковое: 43,2+1,7 нм — в передних слоях и 45,6 нм — вблизи десцеметовой оболочки. Рас­стояние между фибриллами с возрастом умень­шается [552, 553].

глава 3. строение глазного яблока 3 страница - student2.ru

глава 3. строение глазного яблока 3 страница - student2.ru

Рис. 3.2.7. Схема микроскопической организации стромы роговой оболочки (по Hogan et al., 1971):

а — синтициальное расположение кератоцитов; б — распо­ложение и структурная организация стромальных пластин

Коллагеновые фибриллы складываются в пластины, направление которых зависит от глу­бины слоя роговицы. Толщина одной пластины колеблется от 1,5 до 2,5 мкм, а ширина от 9 до 260 мкм. Число коллагеновых пластин рав­няется 300 в центральных участках роговицы и увеличивается до 500 по периферии [857].

Стромальные пластины задних отделов рого­вой оболочки, распространяются циркулярно вдоль лимба, формируя «циркулярную связку» [243, 782, 857]. В то же время стромальные пластины передних слоев располагаются парал­лельно друг другу и параллельно поверхности роговицы.

В центральных участках пластины перекре­щиваются под различным углом в горизонталь­ной плоскости. В поверхностных слоях рогови­цы пластины переплетаются примерно таким же образом, как в плетеных бамбуковых крес­лах. По периферии они раздваиваются, делятся на три части и перемешиваются с циркуляр­ной коллагеновой пластинкой лимба [591, 857] (рис. 3.2.8). Приведенное расположение стро­мальных пластин передних слоев роговицы при­водит к формированию так называемой мозаи­ки [149, 150, 151, 154]. Эту мозаику можно наблюдать, проведя следующие действия. Пер­воначально закапывают в конъюнктивальную полость флюоресцеин, нажимают на глазное яблоко пальцем. После открытия век четко вид­но распределение флюоресцеина в виде много­угольников. Подобное распределение флюорес-

Роговая оболочка и склера




       
  глава 3. строение глазного яблока 3 страница - student2.ru
    глава 3. строение глазного яблока 3 страница - student2.ru
 

глава 3. строение глазного яблока 3 страница - student2.ru

Роговица

Склера

3D О О О О О О ОО 00 О О О 00 О О О ОО

Рис. 3.2.8. Особенности расположения и взаимоот­ношения коллагеновых пластин роговой оболочки и склеры. Обращает на себя внимание различный диа­метр коллагеновых волокон, расположенных в склере (по Bron et al., 1997)

ценна и отражает особенности архитектоники распределения коллагеновых пластин передних слоев стромы.

Параллельное расположение пластин перед­них отделов стромы роговицы и сохранение подобного расположения на границе с задними слоями позволяют производить межпластинча­тое расслоение роговой оболочки при керато­пластике [713].

Необходимо отметить, что передние и зад­ние слои стромы отличаются как строением, так и физико-химическими свойствами. Так, задние слои стромы более упорядочены [343], более гидратированы [1117], обладают более низким преломляющим индексом [818]. Кро­ме того, коллагеновые пластины задних слоев стромы шире и толще (100—200 мкм— шири­на и 1,0—2,5 мкм — толщина) передних слоев (0,5—30 мкм — ширина и 0,2—1,2 мкм — тол­щина) [603, 762, 763]. Имеются также и опре­деленные различия строения кератоцитов [838].

Существование структурных различий пе­редних и задних слоев стромы роговицы мно­гие авторы рассматривают как основу большей устойчивости передних слоев к отеку. Именно это свойство обеспечивает сохранение кривиз­ны роговицы и ее прозрачность при различ­ных физиологических и патологических состоя­ниях [764].

Стромальные пластины погружены в основ­ное вещество, представленное различными ти­пами протеогликанов. Гидрофильная часть ос­новного вещества гликозаминогликанов, в ко­торую погружены коллагеновые волокна, при­обретает форму протеогликанов путем кова-лентного соединения гликозаминогликанов с белками. Протеогликаны имеют довольно раз­нообразное химическое строение. В строме ро­говой оболочки из гликозаминогликанов обна­ружены кератан сульфат, хондроитин-4-суль-

фат, ходроитин-6-сульфат, дерматан сульфат [33, 34, 195].

Молекулы гликозаминогликанов окутывают волокна и ориентируются перпендикулярно кол-лагеновому волокну. Именно связь между во­локнами и протеогликанами опеспечивает про­зрачность роговичной ткани [983].

Различные типы гликозаминогликанов в ро­говой оболочке распределены неравномерно. Некоторые из них преобладают в передних сло­ях стромы, другие — в задних слоях. С преоб­ладанием того или иного типа гликозаминогли­канов в различных слоях стромы связана раз­личная степень гидратации стромы [132, 579], с которой частично связана прозрачность стро­мы. Нарушение синтеза гликозаминогликанов (врожденное или приобретенное) приводит к помутнению роговицы, связанному с отложе­нием продуктов патологического синтеза.

Клетки стромы (кератоциты).Основным клеточным элементом стромы роговой оболоч­ки является кератоцит. Кератоциты составляют 2,4—5,0% объема стромы.

Наиболее близки кератоциты по происхож­дению и строению к фиброцитам. Обнаружива­ются они во всех участках стромы, но с различ­ной плотностью. Использование конфокальной микроскопии позволило установить, что плот­ность кератоцитов в центральных участках ро­говой оболочки равняется 20,5 ±2,9 кл/мм3. Отмечено также, что в передних слоях стромы их плотность меньше на 10%. Плотность кера­тоцитов уменьшается с возрастом примерно на 0,45% в год [817].

Кератоциты обладают длинными отростка­ми, ориентированными параллельно коллагено-вым пластинам. Контактируют отростки с отро­стками рядом расположенных клеток этого же уровня, а также и клетками других уровней стромы (рис. 3.2.3, 3.2.7). При этом между ни­ми формируются межклеточные контакты типа щелевых контактов [1151]. Предполагают, что эти контакты служат взаимодействию между кератоцитами, расположенными в виде сети во всей строме роговицы.

Толщина кератоцитов равна примерно 2 мкм. При этом ядро выглядит непропорционально большим.

Иммуноморфологически в цитоплазме кле­ток выявлены коллагены III, V и VI типов [695, 698, 878].

Цитоплазма кератоцитов бедна органоидами. В прямом контакте с цитоплазматической мем­браной можно обнаружить пятна базальнопо-добного волокнистого материала, особенно по периферии роговицы. Плотный контакт этого материала с коллагеновыми фибриллами стро­мы приводит к образованию периодической структуры. Вокруг многих кератоцитов отме­чается скопление фибриллярного и зернистого материала, являющегося структурным компо­нентом будущих коллагеновых волокон и основ-



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА



глава 3. строение глазного яблока 3 страница - student2.ru ного вещества. Кератоциты обладают большой степенью подвижности.

Основная функция кератоцитов — синтез межклеточного вещества и коллагеновых фиб­рилл в период эмбриогенеза, после поврежде­ния роговицы, а также поддержание метаболиз­ма стромы на протяжении всей жизни.

Birk и Trelstad [122] установили, что поверх­ность фибробластов отвечает за пространст­венную ориентацию коллагеновых фибрилл. Именно благодаря этому свойству формиру­ются пучки.

В связи с тем, что метаболическая актив­ность кератоцитов в норме снижена, эндоплаз-матическая сеть клеток развита слабо. Лишь после травмы и воспалительных изменений ро­говицы эндоплазматическая сеть становится хо­рошо заметной [628].

В строме роговицы встречаются лимфоциты, макрофаги и полиморфноядерные лейкоциты.

Задняя пограничная (десцеметова) плас­тинка(lamina limitans postrior corneae; Dece-mett). Десцеметова оболочка при световой мик­роскопии выглядит бесструктурной мембраной, покрывающей заднюю поверхность стромы ро­говицы (рис. 3.2.3, 3.2.9). В гистогенетическом и структурном смыслах она представляет собой базальную мембрану заднего эпителия рого­вицы (эндотелия), который ее и продуцирует. Эластичность является одной из наиболее важ­ных ее характеристик. Волокна десцеметовой мембраны образуются на протяжении всей жизни человека. Толщина их при рождении равняется 3 мкм, а в старости — 8—12 мкм [540, 878].

Как и другие базальные мембраны, десце­метова оболочка PAS-положительна и состоит из коротких и тонких фибрилл (10 нм). Фиб­риллы, в свою очередь, образованы коллаге-

глава 3. строение глазного яблока 3 страница - student2.ru

Рис. 3.2.9. Схема микроскопического строения задних слоев роговой оболочки (по Pouliquen, 1969):

1—строма роговой оболочки; 2—десцеметова оболочка; 3— задний эпителий (эндотелий)

ном IVтипа и погружены в гликопротеиновое основное вещество [316].

При ультраструктурном исследовании в мембране различают две области [98, 420, 496, 587]. Передняя ее треть имеет толщину 1—4 мкм и задние две трети — 5—15 мкм.

Передний слой десцеметовой оболочки, кон­тактирующий со стромой, имеет многослойный пластинчатый вид, а задний —- гранулирован­ный. Именно передний слой возникает в эмбри­ональном периоде первым. На тангенциальных срезах этот слой состоит из однородных плас­тин коллагеновых волокон, образующих равно­сторонние треугольники. Длина каждой сторо­ны равна ПО нм. Треугольники связаны элек-тронноплотными узлами [1102]. Эти соединения появляются на 5 месяце внутриутробной жиз­ни, когда слой имеют толщину 3,1 мкм (2,2 — 4,5 мкм). Задние 2/з мембраны образуются уже после рождения и состоят из гомогенного фиб-рогранулярного материала.

В мембране, помимо преобладающего колла­гена IV типа, обнаружены коллагены III,V, VI и VIIIтипов [878].

С возрастом в десцеметовой мембране появ­ляются, а затем увеличиваются в количестве коллагеновые волокна и слоистый материал. Этот процесс приводит к появлению на задней поверхности роговицы так называемых борода­вок Хассал—Хенле (Hassal—Henle). При этом отмечается нарушение контактов между клет­ками эндотелия и нарушается барьерная функ­ция последнего.

Несмотря на отсутствие в мембране Десце-мета эластических волокон, она исключительно эластична. При травме нередко десцеметова оболочка скручивается в виде рулона, что обна­руживается при биомикроскопии. Десцеметова мембрана исключительно устойчива в отноше­нии протеолитических ферментов.

Эндотелий (задний эпителий роговой обо­лочки).Эндотелий роговой оболочки представ­ляет собой один слой плоских гексагональных клеток (плоский однослойный эпителий), распо­ложенных на десцеметовой оболочке (рис. 3.2.3, 3.2.9—3.2.11). Наиболее распространено мне­ние о том, что они происходят из клеток ней-рального гребня [792, 878, 1105].

Эндотелий роговой оболочки рассматривают как один из наиболее важных структурных ком­понентов, обеспечивающих прозрачность рого­вицы [451, 1145]. При этом показано, что обес­печение прозрачности роговицы связано со структурной организацией самой клетки, харак­тера межклеточных контактов и расположе­нием эндотелиальных клеток [128, 260, 261]. Основной функцией эндотелиальных клеток при этом является поддержание постоянного гидростатического давления стромы роговой оболочки. Именно важная роль эндотелия в со­хранении прозрачности роговицы явилась при­чиной многочисленных исследований, направ-

Роговая оболочка и склера




глава 3. строение глазного яблока 3 страница - student2.ru глава 3. строение глазного яблока 3 страница - student2.ru глава 3. строение глазного яблока 3 страница - student2.ru

Рис. 3.2.10. Плоскостной препарат эндотелия цент­ральных участков роговой оболочки при исследовании его в фазово-контрастном микроскопе:

отмечается полигональная форма клеток, их примерно одина­ковые размеры и наличие плотных контактов между ними

ленных на изучение строения и функции этой структуры глаза. Способствовало этому при­менение эндотелиальной прижизненной микро­скопии.

Последние исследования показали, что у взрослых количество эндотелиальных клеток ограничено и довольно постоянно. Их количест­во порядка 500 000. С возрастом число клеток уменьшается. Наибольшее уменьшение плот­ности эндотелиальных клеток определяется в первые годы жизни и полностью коррелирует с увеличением площади роговой оболочки ре­бенка.

При использовании эндотелиальной микро­скопии установлено, что плотность эндотели­альных клеток при рождении колеблется в до­вольно широких пределах (2627—5316 клеток в мм2) [764]. Плотность клеток падает пример­но на 26% на первом году жизни. Дальнейшее падение плотности клеток на 26% отмечается на протяжении последующих 2 лет. Затем ско­рость уменьшения плотности клеток снижается и число клеток стабилизируется к среднему возрасту [127, 767, 1001]. Кривая, отражающая процесс уменьшения плотности клеток, имеет линейную или логарифмическую форму [262].

В процессе дифференциации уменьшается степень полиморфизма эндотелиального плас­та, а также уменьшается количество клеток гексаганальной формы [177, 259, 260, 262, 573, 765, 1113]. Правда, необходимо отметить, что скорость уменьшения плотности и формы кле­ток колеблется в широких пределах и не дает исследователям возможности сделать окон­чательное заключение относительно значения этого процесса и факторов, влияющих на этот процесс [1001, 1025].

У молодых людей размер клеток равен 18— 20 мкм (высота — 5—6 мкм), а в более позд-

нем возрасте — 40 мкм [1000]. Появляется би-модальность распределения клеток, как по раз­мерам, так и по содержанию ДНК ядер [36].

Эндотелиальные клетки роговой оболочки присоединяются к десцеметовой оболочке при помощи полудесмосом. Рядом лежащие клетки плотно прилежат друг к другу и соединены десмосомами и запирательными пластинками. Запирательные пластинки распространяются по окружности апикальной поверхности клеток и закрывают межклеточные пространства, обеспечивая барьерные функции эндотелия. Рядом лежащие клетки соединяются также и при помощи «пальцевых вдавлений», представ­ляющих собой цитоплазматические выросты, вдавливающиеся в тело соседней клетки. Не­смотря на обилие межклеточных контактов, между клетками существуют щелевидные про­странства, шириной 20 нм [163, 487].

Наличие контактов между клетками предо­пределяет пропускную способность эндотели­ального слоя. Они ограничивают пассивный транспорт в строму роговой оболочки. Любое проникновение жидкости в строму через меж­клеточные щели уравновешивается активным ионным транспортом, происходящим трансцел-люлярно. Процессы регуляции проникновения жидкости в строму могут быть нарушены при уменьшении плотности расположения эндоте-лиоцитов и расширении межклеточных про­странств, что нередко наблюдается при патоло­гических состояниях. Рядом исследователей установлены также критические пределы уменьшения количества эндотелиальных кле­ток. Резкое уменьшение плотности клеток при­водит к необратимому нарушению гидратации стромы. Считается, что такой плотностью кле­ток является величина, равная 400—700 клеток в квадратном миллиметре (при норме 1400— 2500 клеток) [578]. Тем не менее клинические наблюдения показывают, что при ряде пато­логических состояний даже существенное сни­жение плотности клеток далеко не всегда со­провождается усилением гидратации стромы роговицы [21].

На апикальной поверхности каждой эндоте­лиальной клетки располагается от 20 до 30 микроворсинок высотой 0,5—0,6 мкм и шири­ной 0,1—0,2 мкм. Именно эти образования зна­чительно увеличивают площадь контакта кле­точной поверхности с влагой передней камеры глаза. Можно обнаружить и реснички. Они ча­ще видны по периферии роговицы [889, 918]. Обнаружение ресничек позволило Hogan, Alva-rado, Weddell [496] предположить, что эндо­телиальные клетки имеют единое происхожде­ние с клетками трабекулярной сети.

Цитоплазма эндотелиоцитов богата мито­хондриями, которые обеспечивают энергией активный транспорт, секрецию и высокий уро­вень синтеза протеинов. Эндотелиоциты содер­жат митохондрии в значительно большем коли-



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА



глава 3. строение глазного яблока 3 страница - student2.ru честве, чем любые другие клетки глаза за ис­ключением рецепторных клеток. Обнаружива­ются хорошо развитый гранулярный и аграну-лярный эндоплазматический ретикулум, много­численные свободные рибосомы. Вблизи ядра четко виден аппарат Гольджи. Центриоли с ресничками располагаются в апикальной части клеток. В большом количестве определяются лизосомы. Отличительной чертой эндотелиаль-ных клеток является наличие многочисленных пиноцитозных пузырьков, связанных с цито-плазматической мембраной (рис. 3.2.11). Экспе­риментальными исследованиями с использова­нием радиоактивной метки показано быстрое перемещение этих пузырьков через цитоплаз­му в сторону десцеметовой мембраны. Иммуно-гистохимически в цитоплазме эндотелиальных клеток выявлены основные гликозаминоглика-ны роговицы — хондроитин-6-сульфат, хондрои-тин-4-сульфат, гепаран-сульфат.

глава 3. строение глазного яблока 3 страница - student2.ru

Рис. 3.2.11. Схематическое изображение ультраструк­турной организации клеток эндотелия роговой обо­лочки:

/— микроворсинки; 2 — краевые выпячивания цитоплазмы в переднюю камеру глаза в местах межклеточных контактов; 3 — пиноцитозные пузырьки; 4 — центриоли; 5 — шероховатый эндо­плазматический ретикулум; 6 — рибосомы; 7—ядерные поры; 8 — внутрицитоплазматические филаменты; 9 — аппарат Гольд­жи; 10 — межклеточные контакты различного типа

Необходимо остановиться и на основных фи­зиологических функциях эндотелия роговицы. Одной из них является обеспечение клеток стромы питательными веществами. Процесс транспорта питательных веществ обеспечивает­ся или диффузией между эндотелиоцитами, или активным переносом через содержимое клетки в направлении стромы.

Эндотелий играет главную роль в поддержа­нии прозрачности роговицы путем активной ре­гуляции содержания в строме воды. Эту функ­цию он выполняет, используя два механизма. Во-первых, он является активным барьером для солей и ряда метаболитов, проникновение ко­торых в строму приводит к отеку последней. Во-вторых, он активно снижает осмотическое давление стромы наличием так называемого би-карбонатного насоса, возвращающего ионы из

стромы назад в камерную влагу [318, 711, 746, 918, 1204].

Кровоснабжение и лимфатическое дрени­рованиероговицы обеспечиваются конъюнкти-вальными, эписклеральными и склеральными сосудами, являющимися ветвями передних рес­ничных артерий.

Нервы роговицы.Эпителий роговицы отно­сится к наиболее интенсивно иннервируемым структурам организма человека. Чувствитель­ная иннервация роговицы в 300—600 раз вы­ше, чем иннервация кожи. Площадь эпители­ального пласта, равная 0,01 мм2, содержит до 100 нервных окончаний [931]. На 2,1 млн ба-зальных клеток эпителия роговицы приходится до 1,4 млн нервных окончаний.

Сенсорная иннервация обеспечивается, в первую очередь, ветвями глазного нерва (ветвь тройничного нерва) [30, 878]. Главный источ­ник иннервации роговицы — длинные реснич­ные нервы, являющиеся ветвями тройничного нерва.

Задний длинный ресничный нерв входит в склеру у заднего полюса и распространяется кпереди в супрахориоидальном пространстве. Различаются три уровня проникновения нерв­ных окончаний в роговицу: склеральный, эпи-склеральный и конъюнктивальный [1222].

Около 80 нервных стволов проникают в ткань склеры вблизи лимба и, распространив­шись на 1—2 мм, теряют свои миелиновые обо­лочки. Эти волокна, покинув склеру, распре­деляются в средней трети стромы, делясь при этом ди- и трихотомически. Формируется в результате этого прекорнеальное сплетение. По мере продвижения к центральным участкам роговицы количество аксонов увеличивается за счет их последующего деления (рис. 3.2.12). При прохождении в строме роговой оболочки немиелинизованные нервные волокна распола­гаются параллельно коллагеновым пластинам. Отдельные нервные веточки подходят к керато-цитам и вдавливаются в их цитоплазматичес-кую оболочку [762, 763]. Окружают нервные стволы шванновские клетки и аморфный мате­риал. Содержат аксоны многочисленные мито­хондрии, частицы гликогена и микропузырьки. Диаметр аксонов нервных волокон роговицы колеблется от 1 до 5 мкм.

В эпителиальный пласт из стромы нервы проникают через отверстия в боуменовой обо­лочке и образуют подэпителиальное сплете­ние [705, 971, 762, 763]. Иннервируются все эпителиальные клетки вплоть до поверхност­ных двух слоев, в которых нервные окончания имеют вид бусинок, колб Краузе, пластинок, лопаточек и др. [28, 29, 496, 762, 763, 878]. Концевые колбы Краузе, обеспечивающие тем­пературную чувствительность, обнаруживают­ся лишь в области лимба. Некоторые сплете­ния нервных волокон контактируют с клетками Ларгенганса [971, 762, 763]. Иннервации дес-

Роговая оболочка и склера




глава 3. строение глазного яблока 3 страница - student2.ru

глава 3. строение глазного яблока 3 страница - student2.ru

глава 3. строение глазного яблока 3 страница - student2.ru

/ КГ Г V


Рис. 3.2.12. Схематические изображения особенностей иннервации роговой оболочки:

а — трехмерное изображение прохождения и распределения нервных волокон в роговой оболочке; б—поперечный срез роговицы. Распределение нервных волокон и нервных окончаний в переднем эпителии роговой оболочки; в — плоскостной препарат. Поверх­ностное краевое нервное сплетение

цеметовой оболочки и эндотелия не выявля­ются [931].

Ультраструктурные особенности нервов ро­говой оболочки позволяют некоторым авторам предполагать наличие пептидэргической иннер­вации как кератоцитов, так и эпителиальных клеток [762, 763].

Время регенерации нервных волокон рого­вицы длится около трех месяцев. Начинается регенерация нервов с периферии роговицы по направлению к центру. Помимо чувствитель­ной иннервации, роговица обеспечена и вегета­тивной. Вегетативные волокна исходят из трех ганглиев. Это тройничный, ресничный и верх­ний шейный ганглии. Основным доказательст­вом наличия вегетативной иннервации роговой оболочки является обнаружение отхождения нервных веточек от нервов лимбальных сосудов [1, 2, 28], а также эспериментальные исследо­вания по перерезке нервных стволов, отходя­щих от вегетативных узлов, или после «раздра­жения» последних. Вегетативная иннервация обеспечивает трофику роговицы. Денервация роговой оболочки в эксперименте путем пере­резки нервных стволов, входящих в глазное яблоко вблизи зрительного нерва, приводит к развитию дистрофических процессов, напомина­ющих нейропаралитический кератит у человека [16,17, 30]. Аналогичного характера дистрофи­ческие процессы роговой оболочки и структур переднего отдела глаза наблюдаются и после проведения циркляжа силиконовой лентой, ко­торая передавливает ресничные нервы [12].

О значении иннервации говорит и то, что одним из необходимых основных условий диф-

ференциации эпителиальных и стромальных компонентов роговицы после травмы или ке­ратопластики является реиннервация роговой оболочки [6, 30].

Старение роговой оболочки.Старение яв­ляется естественным процессом у многокле­точных животных, приводящим к нарушению структуры и функции тканей и органов [923]. У человека признаки старения проявляются как функция времени. Выражаются они в нару­шении дифференциации клеток, а их причиной являются биологические изменения, заложен­ные генетически или возникающие под влия­нием на организм внешней среды.

Процесс старения ткани можно разделить на старение длительно существующих белков, старение делящихся клеток и старение неделя-щихся клеток [175].

Делящиеся клетки характеризуются тем, что их популяция поддерживается равновесием двух разнонаправленных процессов — скорос­тью размножения клеток и скоростью их гибе­ли. Наиболее типичным примером такой по­пуляции являются клетки переднего эпителия роговой оболочки. В роговичном эпителии пол­ная смена дифференцированных эпителиальных клеток происходит за 5—7 дней [647, 695, 698]. Некоторые типы клеток способны к интенсив­ной пролиферации только после воздействия на них каких-либо внешних факторов. К подобным клеткам можно отнести кератоциты стромы ро­говицы [1115]. Клетки эндотелия роговицы так­же способны к делению, но деление эндотели-альных клеток у человека происходит исклю­чительно редко [744, 977, 1087, 1127]. К неде-

Наши рекомендации