Отдельные представители полисахаридов
Муреин входит в состав клеточных стенок бактерий в качестве структурного полисахарида. В нем чередуются остатки двух различных моносахаридов, связанных в положении β(1→4): N-ацетилглюкозамина и N-ацетилмурамовой кислоты.
Декстраны – это полисахариды бактерий и дрожжей, представляющие собой полимеры глюкозы, связанной преимущественно в положении α(1→6), а также в точках ветвления в положении α(1→3) и иногда в положениях α(1→2) или α(1→4). В воде декстран образует гели. Синтетические декстраны используются в ряде коммерческих продуктов (например, Sеphadex), которые применяются в хроматографии для разделения макромолекул. В таких продуктах декстраны химически модифицированы путем введения поперечных сшивок, делающих их непроницаемыми для молекул определенных размеров. Растворимый декстран применяется при создании заменителей плазмы крови, а также используется как пищевой продукт.
Хитин, гомополимер из N-ацетилглюкозамина, связанного в положении β(1→4), является основным компонентом наружного скелета насекомых и панциря ракообразных. Кроме того, он входит в состав клеточных стенок мицелия грибов:
Хитин
Полисахариды из водорослей например, агароза, применяются как желирующие вещества. Агарозы более 100 лет используются в микробиологии как гелевая основа питательных сред (агар-агар).
Для того чтобы запись структуры олиго- и полисахаридов не занимала слишком много места, при отображении остатков моносахаридов используют латинскую трехбуквенную символику. Обозначения, принятые для важнейших моносахаридов и их производных представлены в табл. 2.1.
Таблица 2.1
Сокращенная форма записи наиболее распространенных моносахаридов и их производных
Название моносахарида | Трехбуквенная символика | Название производных моносахаридов | Трехбуквенная символика |
Арабиноза Фруктоза Фукоза Галактоза Глюкоза Манноза Рамноза Рибоза Ксилоза | Ara Fru Fuc Gal Glc Man Rha Rib Xyl | Глюкуроновая кислота Галактозамин Глюкозамин N-ацетилгалактозамин N-ацетилглюкозамин Идуроновая кислота Мурамовая кислота N-ацетилмурамовая кислота N-ацетилнейраминовая кислота | GlcA GalN GlcN GalNAc GlcNAc IdoA Mur Mur2Ac Neu5Ac |
Таким образом, молекулу целлюлозы можно записать как [βGlc(1→4)—]n ,
а молекулу хитина как [—βGlcNAc(1→4)—]n.
ЛЕКЦИЯ 3
СТРОЕНИЕ, СВОЙСТВА, БИОЛОГИЧЕСКАЯ РОЛЬ
ПРОСТЫХ ЛИПИДОВ
Липиды – это группа разнородных по химическому строению органических веществ, общим свойством которых является их нерастворимость в воде.
Функции липидов в организме:
энергетическая: запасание и хранение энергии (нейтральные жиры). При расщеплении 1 г нейтрального жира выделяется около 9 ккал или 38 кДж, что более чем в 2 раза превышает выход энергии при расщеплении 1 г углеводов или белков;
защитная (липидный слой кожи животных защищает их от механических и температурных воздействий);
структурная (многие липиды являются структурными компонентами клеточных мембран);
регуляторная (некоторые гормоны имеют липидную природу, например, половые).
Классификация
Липиды бывают простые и сложные. Простые состоят из двух компонентов (например, нейтральные жиры содержат глицерин и жирные кислоты), а сложные – более чем из двух.
К простым липидам относятся жиры (триглицеролы или нейтральные жиры) и воски. Их обязательный компонент – жирные кислоты.
Жирные кислоты (ЖК) – это монокарбоновые кислоты с одной алифатической цепью, т.е. состоящие из одной карбоксильной группы и длинного неполярного хвоста.
Жирные кислоты природных липидов, как правило, содержат четное количество атомов углерода
Жирные кислоты подразделяются на предельные (или насыщенные) и непредельные (ненасыщенные). Предельные кислоты не содержат двойных связей. Непредельные кислоты содержат одну (мононенасыщенные) или несколько (полиненасыщенные) двойных связей:
СН3(СН2)nСН=СН(СН2)nСООН – мононенасыщенные;
СН3(СН2)n(СН=СНСН2)m(СН2)kСООН – полиненасыщенные
Двойные связи в природных полиненасыщенных жирных кислотах – изолированные (несопряженные). Как правило, связи имеют цис-конфигурацию, что придает таким молекулам дополнительную жесткость. Это имеет биологический смысл, т.к. такие молекулы входят в состав клеточных мембран.
Приведем их классификацию.
Из ненасыщенных ЖК чаще всего встречаются пальмитиновая и стеариновая.
С16:0 – сокращенное обозначение пальмитиновой кислоты – означает, что у нее 16 атомов углерода и нет двойных связей.
СН3(СН2)14СООН – другое обозначение пальмитиновой кислоты
С18:0 – стеариновая, СН3(СН2)16СООН
Кроме того, выделяются следующие насыщенные жирные кислоты:
С12:0 – лауриновая;
С14:0 – миристиновая;
С20:0 – арахиновая;
С22:0 – бегеновая;
С24:0 – лигноцериновая.
Моноеновые:
С 16 : 1 – пальмитоолеиновая
СН3(СН2)5СН=СН(СН2)7СООН;
С18:1 – олеиновая
СН3(СН2)7СН=СН(СН2)7СООН.
Положение двойной связи относительно карбоксильной группы обозначают знаком ∆9, где число показывает порядковый номер атома углерода, возле которого находится двойная связь. Таким образом, названные кислоты могуть быть обозначены соответственно С16:1, ∆9 и С18:1, ∆9.
Полиеновые кислотычаще всего бывают с двумя и тремя двойными связями:
С18:2, ∆9 – линолевая, СН3(СН2)4(СН=СНСН2)2(СН2)6СООН;
С18:3, ∆9 – линоленовая, СН3СН2(СН=СНСН2)3(СН2)6СООН.
Иногда встречаются жирные кислоты (т.н. необычные), в алифатических цепях которых есть заместители: СН3-, -ОН, С=О и др.:
СН3
СН3(СН2)7-СН-(СН2)8СООН – туберкулостеариновая, С19:0, из туберкулезных палочек
С Н2
СН3(СН2)5-СН - СН(СН2)9СООН – лактобацилловая С19:0.
Жирные кислоты нерастворимы в воде, температура плавления понижается с увеличением числа двойных связей и укорочением цепи.
Такие жирные кислоты, как линолевая, линоленовая и им подобные (с двумя и тремя двойными связями), не синтезируются внутри организма человека и называются незаменимыми. Поэтому их необходимо получать с пищей.
При этом полиеновые кислоты делят на две группы: ω-3 и ω-6 (в зависимости от положения двойной связи от углеродного атома последней, метильной группы). Эти кислоты являются предшественниками разных групп гормонов местного действия – эйкозаноидов. Так, линолевая кислота является примером ω-6 кислот. В качестве примера ω-3 кислот можно привести тимнодоновую (эйкозапентановую) кислоту, С20:5 (ω-3). Она содержится в жире морских рыб, хотя имеет растительное происхождение, синтезируется фитопланктоном. Кроме того, такие рыбы как лосось, макрель, сельдь, сардина и др., поедая планктон, накапливают эту кислоту в своем жире. При употреблении человеком в пищу этой кислоты у него понижается свертываемость крови, что используется для профилактики сердечно-сосудистых заболеваний.
Воски
Воски – это сложные эфиры, образуемые длинноцепочечными жирными кислотами и длинноцепочечными спиртами (с числом углеродных атомов от 16 до 36). Воски широко распространены в природе. Восковое покрытие листьев и плодов растений защищает их от механических повреждений, уменьшает потери влаги, препятствует возникновению инфекции. У позвоночных воски, секретируемые кожными железами, выполняют функцию защитного покрытия, смазывающего и смягчающего кожу и предохраняющего ее от воды. Восковым секретом покрыты волосы. Перья птиц и шкура животных также имеют восковое покрытие, придающее им водоотталкивающие свойства. Воск овечьей шерсти – ланолин – широко используется в медицине и косметике как основа для приготовления мазей и кремов. Воск, вырабатываемый пчелами, служит строительным материалом сот:
Пчелиный воск
Воски являются нормальными метаболитами некоторых микроорганизмов. Природные воски наряду со сложными эфирами высших жирных кислот и высших спиртов содержат некоторое количество свободных жирных кислот, спиртов, а также углеводородов с нечетным числом атомов углерода (21-35), красящих и душистых веществ. Все воски представляют собой твердые вещества разнообразной окраски, устойчивые к действию света, окислителей, нагреванию. Температура их плавления – от 30 до 90о С.
Нейтральные жиры (триацилглицеролы, триглицериды)
Это сложные эфиры глицерина и жирных кислот. Нейтральные жиры бывают простыми и смешанными. Простые содержат одинаковые остатки жирных кислот, смешанные – остатки разных жирных кислот. В состав нейтральных жиров могут входить как насыщенные, так и ненасыщенные жирные кислоты.
Нейтральные жиры делятся на триацилглицериды, диацилглицериды и моноацилглицериды (в зависимости от количества жирных кислот, присоединенных к глицерину). Наиболее распространены триацилглицериды. Названия триацилглицеролов образуются от названий жирных кислот, входящих в их состав. Например, триацилглицерол, содержащий три остатка пальмитиновой кислоты, будет называться трипальмитин:
Если молекула содержит остатки различных жирных кислот, то в названии будут указаны все входящие в ее состав остатки с окончанием –оил и добавлением слова глицерол. Например, 1-стеароил, 2-линолеоил, 3-пальмитоил глицерол:
Физико-химические свойства триглицеридов определяются свойствами входящих в их состав жирных кислот. Как правило, животные триацилглицериды содержат больше насыщенных кислот, чем растительные, и поэтому тверже. Состав и качество жира характеризуются особыми параметрами, называемыми химическими константами триглицеридов:
1) йодное число – это количество граммов йода, которое связывается 100 граммами жира. Поскольку йод связывается только с двойными связями жирных кислот, йодное число характеризует степень ненасыщенности жира.
2) кислотное число – количество милиграммов гидрооксида калия, необходимое для нейтрализации 1 грамма жира. Указывает на количество свободных жирных кислот в жире.
3) число омыления ‒ количество милиграммов гидрооксида калия, необходимое для нейтрализации всех жирных кислот, свободных и связанных, входящих в состав жира.
Стероиды
Стероиды – это группа соединений, имеющих в своей структуре ядро, образованное гидрированным фенантреном (кольца А, В, С) и циклопентаном (кольцо D). Каждое из 6-углеродных колец может находиться в форме «кресла» или «ванны», что является более устойчивой конформацией. В свою очередь, по отношению друг к другу кольца могут находиться в цис- или транс-положениях.
Среди стероидов выделяется группа соединений, получивших название стеринов (стеролов). Характерным для них является наличие гидроксильной группы в положении 3, а также боковой цепи в положении 17:
Стерины подразделяют на зоо-,фито- и микостерины (содержатся в грибах).
У важнейшего представителя стеринов – холестерина – все кольца находятся в транс-положении и, кроме того, он имеет двойную связь между 5-м и 6-м углеродными атомами.
Холестерин, следовательно, является ненасыщенным спиртом. Боковые прверхности стероидного ядра были бы почти плоскими, если бы не метильные группы, присоединенные к С10 и С13, что делает одну из сторон молекулы более выпуклой. Эта сторона обозначается как β, а противоположная ей как α. Прородный холестерин содержит гидроксильную группу на β-поверхности. Его изомер с гидроксильной группой на α-поверхности называется эпихолестерин.
Кольцевая структура холестерина отличается значительной жесткостью, а боковая цепь, напротив, относительно подвижна. В чистом виде холестерин представляет собой кристаллические жемчужные пластинки или иглы, воскообразные на ощупь и не растворимые в воде, но растворимые в органических соединениях. Наличие у холестерина в 3-м положении гидроксильной группы обусловливает ряд физико-химических свойств. Благодаря этой группе холестерин образует эфиры с жирными кислотами. Эфиры холестерина, так же как и сами жирные кислоты, в зависимости от температуры и других условий, могут находиться в состоянии жидких кристаллов, в том числе и в организме животных и человека.
Холестерин является одним из важнейших веществ организма. Каждая клетка содержит его. Неэстерифициованный холестерин вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны и влияет на состояние мембраны и на активность связанных с ней ферментов. В цитоплазме клеток холестерин находится преимущественно в виде эфиров с жирными кислотами, образуя мелкие капли.
В теле взрослого человека общее содержание холестерина оценивается величиной порядка 200-350 граммов. В крови большая часть холестерина связана с белками. Норма содержания общего холестерина 1,5 – 2,5 г/л. У взрослого человека примерно 67-70 % холестерина плазмы крови находится в составе липопротеинов низкой плотности (ЛПНП), 9-10 % в составе липопротеинов очень низкой плотности (ЛПОНП) и 20-24 % в составе липопротеинов высокой плотности (ЛПВП). У животных, не склонных к возникновению атеросклероза большая часть холестерина находится в плазме виде ЛПВП, обладающих антиатерогенным действием.
Гипохолестеринемия может быть связана с пониженным поступлением холестерина с пищей или понижением биосинтеза эндогенного холестерина, что в свою очередь может быть связано либо с недостатком питания, либо с блокадой биосинтеза холестерина в печени. Гиперхолестеринемия может быть обусловлена повышением скорости биосинтеза холестерина или повышением его поступлением с пищей. Также гиперхолестеринемия может быть вызвана наследственным недостатком рецепторов к ЛПНП, вследствие чего резко снижается захват и последующий катаболизм холестерина. Гиперхолестеринемия лежит в основе развития атеросклероза.
В мембранах растительных клеток содержатся близкие к холестерину соединения, называемые фитостеринами. Они отличаются от холестерина строением только боковой цепи. В дрожжевых клетках находится эргостерин, который отличается строением боковой цепи и тем, что содержит двойную связь между 7-м и 8-м атомами углерода в кольце. Клетки бактерий стеринов не содержат.
Стигмастерин Ситостерин Эргостерин
Восстановленное производное холестерина – копростерин, содержится в составе фекалий человека и млекопитающих.
Желчные кислоты
Из холестерина в печени образуются желчные кислоты. По химическому строению эти соединения близки к холестерину. Для них характерно наличие укороченной разветвленной боковой цепи с карбоксильной группой на конце. Двойная связь в кольце В отсутствует, а кольца А и В сочленены в цис-положении. Стероидный кор в положениях 3, 7 и 12 содержит от одной до трех β-гидроксильных групп.
Желчные кислоты обеспечивают растворимость холестерина в желчи и способствуют перевариванию липидов. В печени вначале образуются первичные желчные кислоты − холевая и хенодезоксихолевая (антроподезоксихолевая).
Холевая кислота Литохолевая кислота
Дегидроксилирование этих соединений по С-7 микрофлорой кишечника приводит к образованию вторичных желчных кислот − литохолевой и дезоксихолевой.
В организме человека присутствуют шесть стероидных гормонов: прогестерон, кортизол, альдостерон, тестостерон, эстрадиол и кальцитриол (устаревшее название – кальциферол).
За исключением кальцитриола, эти соединения имеют очень короткую боковую цепь из двух углеродных атомов или не имеют ее вовсе. Для большинства соединений этой группы характерно наличие оксогруппы при С-3 и сопряженной двойной связи С-4/С-5 в кольце А. Различия наблюдаются в строении колец С и D. В эстрадиоле кольцо А ароматическое и, следовательно, гидроксильная группа oблaдаeт свойствами фенольной ОН-группы. Кальцитриол отличается от гормонов позвоночных, однако также построен на основе холестерина. За счет светозависимой реакции раскрытия кольца В кальцитриол образует так называемый секостероид − стероид с раскрытым кольцом.
Экдизон − стероидный гормон насекомых − представляет собой более раннюю в эволюционном отношении форму стероидов. Стероидные гормоны, выполняющие сигнальную функцию, встречаются также в растениях.
ЛЕКЦИЯ 4