Биосинтез глицерофосфолипидов.

3.3.1.Как известно (1.4.2), глицерофосфолипиды являются производными фосфатидной кислоты и одного из аминоспиртов (например, этаноламина, холина или серина). Реакции образования фосфатидной кислоты обсуждались в предыдущем параграфе (см. 3.2.2, рисунок 3.5).

Подобно другим предшественникам в биосинтезе липидов, аминоспирты, участвующие в синтезе фосфолипидов, вступают в реакцию в активной форме – в виде соединения с цитидиндифосфатом (ЦДФ). В качестве примера на рисунке 3.7 приводятся реакции активации этаноламина. Обратите внимание, что в реакциях активации аминоспиртов принимают участие два нуклеозидтрифосфата – АТФ и ЦТФ.

Биосинтез глицерофосфолипидов. - student2.ru

Рисунок 3.7.Реакции образования активной формы этаноламина.

Далее остаток фосфоэтаноламина с ЦДФ-этаноламина переносится на 1,2-диацилглицерол, образующийся в результате дефосфорилирования фосфатидной кислоты (рисунок 3.8, реакции 1 и 2). Продуктом реакции является фосфатидилэтаноламин.

Биосинтез глицерофосфолипидов. - student2.ru

Рисунок 3.8.Реакции синтеза фосфатидилхолина.

Синтез фосфатидилхолина происходит путём трёхкратного метилирования фосфатидидэтаноламина. Донором метильных групп служит S-аденозилметионин (рисунок 3.8, реакция 3). Фосфатидилхолин может образоваться также путём активации холина, подобно этаноламину.

Фосфатидилсерин образуется в реакции прямого взаимодействия фосфатидилэтаноламина и серина:

Биосинтез глицерофосфолипидов. - student2.ru

3.3.2. Липотропные факторы – вещества, способствующие синтезу фосфолипидов и препятствующие отложению триацилглицеролов в тканях.

Липотропный эффект этих соединений связан с тем, что общим предшественником триацилглицеролов и фосфолипидов является фосфатидная кислота. При недостатке липотропных факторов фосфатидная кислота используется преимущественно для синтеза триацилглицеролов. Они нерастворимы в воде и накапливаются в клетках, способствуя их жировому перерождению. Запомните, какие липотропные факторы можно использовать в качестве препаратов для его предупреждения:

1) холин – самое распространённое азотистое основание фосфолипидов;

2) метионин – незаменимая аминокислота, предшественник S-аденозилметионина, универсального донора метильных групп;

3) фолиевая кислота и витамин В12 – предшественники коферментов, участвующих в реакциях переноса СН3-групп.

При введении липотропных факторов снижается синтез триацилглицеролов и усиливается выведение жира из клеток при участии липопротеиновых комплексов (см.3.5.2).

Биосинтез холестерола.

3.4.1.Исходным соединением для синтеза холестерола является ацетил-КоА (см. 2.2.3, рисунок 2.6). Ферменты, катализирующие реакции синтеза, содержатся в цитоплазме и эндоплазматическом ретикулуме многих клеток. Наиболее активно этот процесс происходит в печени. В организме человека в сутки синтезируется около одного грамма холестерола.

3.4.2.Биосинтез холестерола включает три основные стадии (рисунок 3.9).

Биосинтез глицерофосфолипидов. - student2.ru

Рисунок 3.9. Синтез холестерола.

На первой стадии образуется мевалоновая кислота (рисунок 3.9, а).

На второй стадии мевалоновая кислота превращается в изопентенилпирофосфат («активный изопрен»), 6 молекул которого конденсируются в сквален (рисунок 3.9, б).

На третьей стадии сквален превращается в холестерол (рисунок 3.9, в).

Всего для синтеза 1 молекулы холестерола используется 18 молекул ацетил-КоА: для образования «активного изопрена» требуется 3 молекулы; в последующих реакциях конденсации участвуют 6 молекул «активного изопрена»; 3 × 6 = 18.

3.4.3.Скорость синтеза холестерола в организме регулируется по механизму отрицательной обратной связи (рисунок 3.8, пунктирная стрелка). Фермент β-гидрокси-β-метилглутарил-КоА-редуктаза катализирует лимитирующую реакцию биосинтеза холестерола. Холестерол является корепрессором синтеза данного ферментного белка, что приводит к снижению скорости катализируемой реакции. Поэтому при поступлении избытка холестерола с пищей синтез эндогенного холестерола прекращается.

Холестерол является компонентом биологических мембран, из него в организме образуются стероидные гормоны, витамин D3, желчные кислоты (см. 1.1.2). Избыток холестерола превращается в печени в желчные кислоты (см. 2.1.3, рисунок 2.3), а также выделяется с желчью в кишечник и выводится с калом.

3.4.4.Нормальное содержание холестерола в сыворотке крови человека составляет 3,9 – 6,3 ммоль/л. Транспортной формой холестерола в крови являются липопротеины (см. далее 3.5.2). Если нарушается соотношение между поступлением холестерола в организм и его выведением, то содержание холестерола в тканях и крови изменяется. Повышение концентрации холестерола в крови (гиперхолестеролемия) может приводить к развитию атеросклероза и желчно-каменной болезни.

Липопротеины.

3.5.1. Липиды нерастворимы в воде и поэтому транспортируются кровью в форме надмолекулярных комплексов – липопротеинов. Гидрофобное ядро липопротеинов содержит неполярные липиды (ТАГ, эфиры холестерола), оболочка состоит из амфифильных липидов (фосфолипиды, холестерол) и белков-апопротеинов (см. 2.2.2). Липопротеины различаются по химическому составу, свойствам и функциям. Основными классами липопротеинов являются: 1) хиломикроны, 2) липопротеины очень низкой плотности (ЛПОНП), 3) липопротеины низкой плотности (ЛПНП), 4) липопротеины высокой плотности (ЛПВП).

3.5.2.Особенности обмена и биологическая роль различных классов липопротеинов представлены на рисунке 3.10.

Биосинтез глицерофосфолипидов. - student2.ru

Рисунок 3.10.Обмен липопротеинов. ЛПВП - липопротеин высокой плотности; ЛПНП - липопротеин низкой плотности; ЛПОНП - липопротеин очень низкой плотности; ХМ - хиломикрон; ТГ - триацилглицерол; ХС -холестерол; ЭХС - эфир холестерола; ЛПЛ-аза - липопротеинлипаза; ЛХАТ - лецитин: холестерол-ацилтрансфераза.

Хиломикроны (см. также 2.2.2) образуются в стенке кишечника, содержат до 80% ТАГ пищевого происхождения, которые транспортируются кровью в периферические ткани. В кровеносных капиллярах ТАГ подвергаются гидролизу липопротеинлипазой; образующиеся жирные кислоты поступают в ткани, а «остатки» хиломикронов поглощаются клетками печени (рисунок 3.10, пунктирная линия).

ЛПОНП - образуются в печени, являются транспортной формой эндогенных ТАГ. Как и хиломикроны, являются субстратами липопротеинлипазы эндотелия капилляров. После гидролиза ТАГ, ЛПОНП превращаются в ЛПНП.

ЛПНП - образуются в крови из ЛПОНП под действием липопротеинлипазы. Богаты холестеролом, транспортируют его во внепечёночные ткани. В результате взаимодействия ЛПНП с рецепторами на поверхности мембран холестерол из ЛПНП проникает внутрь клеток, где участвует в образовании клеточных структур и реакциях биосинтеза веществ (см.1.4.1).

ЛПВП – образуются в печени, первоначально состоят преимущественно из белков и фосфолипидов и имеют форму дисков. При помощи фермента ЛХАТ липопротеины этого класса извлекают избыток холестерола из внепечёночных клеток и в форме эфиров доставляют его в печень.

Увеличение содержания в крови ЛПНП и ЛПОНП и уменьшение содержания ЛПВП способствует развитию атеросклероза. Следовательно, ЛПОНП и ЛПНП –атерогенные липопротеины, ЛПВП –антиатерогенные липопротеины.

Наши рекомендации