Строение периферического нерва
Нерв – скопление миелиновых или безмиелиновых волокон.
Эндоневрий – рыхлая соединительная ткань окружающая каждое волокно.
Перинерий – прослойка, несколько волокон.
Эпиневрий – наружная соединительная ткань (снаружи нерва).
Лекция 7. Нервная ткань.
Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражении, возбуждения, выработки импульса и передачи его. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой. Нервная ткань состоит из:
1. Нервных клеток (нейроны, нейроциты) — основные структурные компоненты нервной ткани, выполняющие специфическую функцию.
2. Нейроглии, которая обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции.
Развитие нервной ткани I - образование нервной бороздки, ее погружение, II - образование нервной трубки, нервного гребня, III - миграция клеток нервного гребня;
1 - нервная бороздка, 2 - нервный гребень, 3 - нервная трубка,
4 - эктодерма Нервная ткань развивается из дорсальной эктодермы. Процесс формирования нервной трубки называется нейруляцией. На 18 день эктодерма по средней линии спины дифференцируется, образуется продольное утолщение, называемое нервной пластинкой. Вскоре эта пластинка прогибается по центральной линии и превращается в желобок, ограниченный по краям нервными валиками. В дальнейшем желобок смыкается в нервную трубку и обособляется от кожной эктодермы. В месте отделения нервной трубки от эктодермы выделяются два тяжа клеток, называемых нервными гребнями (ганглиозные пластинки). Передняя часть нервной трубки начинает утолщаться и превращается в головной мозг.
Нервная трубка и ганглиозная пластинка состоят из малодифференцированных клеток - медулобластов, которые интенсивно делятся митозом. Медулобласты очень рано начинают дифференцироваться и дают начало 2 дифферонам: нейробластический дифферон (нейробласты молодые нейроциты зрелые нейроциты); спонгиобластический дифферон (спонгиобласты глиобласты глиоциты). Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало спинальным ганглиям и узлам вегетативной НС, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев, клеткам мозгового вещества надпочечников, меланоцитам кожи и др. Гистогенез Размножение нервных клеток происходит главным образом в период эмбрионального развития. Вначале нервная трубка состоит из 1 слоя клеток, которые размножаются митозом, что приводит к увеличению количества слоев. Первичная нервная трубка в спинальном отделе рано делится на три слоя: 1) самый внутренний эпендимный слой, содержащий зачатковые клетки – эпендимоциты (выстилают спинно-мозговой канал, мозговые желудочки). 2) промежуточная зона (мантийный или плащевой слой), куда мигрируют пролиферирующие клетки из эпендимного слоя; клетки дифференцируится в 2-х направлениях:
а) Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны (нейроциты).
б) Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. (см. Макроглия, стр. 5)
Способность к делению не утрачивают полностью и зрелые астроциты, и олигодендроциты. Новообразование нейронов прекращается в раннем постнатальном периоде. Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга. 3) наружный слой – краевая вуаль, который в зрелом мозге содержит миелиновые волокна – отростки 2-х предыдущих слоев и макроглию и дает начало белому веществу. Нейроны
Нейроны, или нейроциты — специализированные клетки нервной системы, ответственные за рецепцию, обработку (процессинг) стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейроны выделяют нейромедиаторы и другие вещества, передающие информацию. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих
отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. Нейроны отличаются большим разнообразием форм и размеров. Диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Обычно нейроны состоят из тела (перикариона) и отростков: аксона и различного числа ветвящихся дендритов. Отростки нейронов
1. Аксон (нейрит) - отросток, по которому импульс ид.т от тел нейронов. Аксон всегда один. Он образуется раньше других отростков.
2. Дендриты - отростки, по которым импульс ид.т к телу нейрона. Клетка может иметь несколько или даже много дендритов. Обычно дендриты ветвятся, с чем связано их название (греч. dendron - дерево).
Виды нейронов По количеству отростков различают:
1. униполярные нейроны, имеющие только аксон (у высших животных и человека обычно не встречаются, только нейробласты на промежуточной стадии дифференцировки в эмбриогенезе и в процессе регенерации),
2. биполярные, имеющие аксон и один дендрит (в органах чувств: клетки сетчатки глаза, в спиральном ганглии внутреннего уха). Иногда среди биполярных нейронов встречается псевдоуниполярный, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные
нейроны присутствуют в спинальных ганглиях.
3. мультиполярные, имеющие аксон и много дендритов. Большинство нейронов мультиполярные.
По функции нейроциты делятся:
1. афферентные (рецепторные, чувствительные, центростремительные) – воспринимают и передают импульсы в ЦНС под воздействием внутренней или внешней среды;
2. ассоциативные (вставочные) - соединяют нейроны разных типов;
3. эффекторные (эфферентныеные) - двигательные (моторные) или секреторные - передают импульсы от ЦНС на ткани рабочих органов, побуждая их к действию.
Различные типы нейронов:
а - униполярный,
б - биполярный,
в - псевдоуниполярный,
г - мультиполярный
Ядро нейроцита - обычно крупное, круглое, содержит сильно деконденсированный хроматин. Исключение составляют нейроны некоторых ганглиев вегетативной нервной системы; например, в предстательной железе и шейке матки иногда встречаются нейроны, содержащие до 15 ядер. В ядре имеется 1, а иногда 2—3 крупных ядрышка. Усиление функциональной активности нейронов обычно сопровождается увеличением объема (и количества) ядрышек. В цитоплазме имеется хорошо выраженная гранулярная ЭПС, рибосомы, пластинчатый комплекс и митохондрии. Специальные органеллы:
1. Базофильное вещество (хроматофильная субстанция или тигроидное вещество, или вещество/субстанция/глыбки Ниссля). Располагается в перикарионе (теле) и дендритах (в аксоне (нейрите) - отсутствует). При окрашивании нервной ткани анилиновыми красителями выявляется в виде базофильных глыбок и зерен различных размеров и форм. Электронная микроскопия показала, что каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Это вещество активно синтезирует белок. Оно активно, находится в динамическом состоянии, его количество зависит от состояния НС. При активной деятельности нейрона базофилия глыбок возрастает. При перенапряжении или травме глыбки распадаются и исчезают, процесс назыается хромолиз (тигролиз).
2. Нейрофибриллы, состоящие из нейрофиламентов и нейротубул. Нейрофибриллы - это фибриллярные структуры из спиралевидно закрученных белков; выявляются при импрегнации серебром в виде волокон, расположенных в теле нейроцита беспорядочно, а в отростках - параллельными пучками; функция: опорно-механическая (цитоскелет) и участвуют в транспорте веществ по нервному отростку.
Включения: гликоген, ферменты, пигменты. Нейроглия Глиальные клетки обеспечивают деятельность нейронов, играя вспомогательную роль. Выполняет функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную.
Макроглия (глиоциты) Макроглия развивается из глиобластов нервной трубки. Глиоциты: 1. Эпиндимоциты. 2. Астроциты: а) протоплазматические астроциты (синоним: коротколучистые астроциты); б) волокнистые астроциты (синоним: длиннолучистые астроциты). 3. Олигодендроциты: Эпиндимоциты Выстилают спинно-мозговой канал, мозговые желудочки. По строению напоминают эпителий. Клетки имеют низкопризматическую форму, плотно прилегают друг к другу, образуя сплошной пласт. На апикальной поверхности могут иметь мерцательные реснички, вызывающие ток цереброспинальной жидкости. Другой конец клеток продолжается в длинный отросток, пронизывающий всю толщу головного, спинного мозга. Функции: разграничительная (пограничная мембрана: ликвор мозговая ткань), опорная, секреторная - участвует в образовании и регуляции состава ликвора. Астроциты Отросчатые ("лучистые") клетки, образуют остов спинного и головного мозга. 1) протоплазматические астроциты - клетки с короткими, но толстыми отростками, содержатся в сером веществе. Функции: трофическая, разграничительная. 2) волокнистые астроциты - клетки с тонкими длинными отростками, находятся в белом веществе ЦНС. Функции: опорная, участие в процессах обмена. Олигодендроциты Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов (тел нервных клеток). В белом веществе их отростки образуют миелиновыи слой в миелиновых нервных волокнах. Олигодендроциты, прилежащие к перикариону (в периф. н.с. - клетки-сателлиты, мантийные глиоциты, или глиоциты ганглиев). Окружают тела нейронов и контролируют тем самым обмен веществ между нейронами и окружающей средой. Олигодендроциты нервных волокон (в периф. н.с. - леммоциты, или шванновские клетки). Окружают отростки нейронов, образуя оболочки нервных волокон.
Функции: трофическая, участие в обмене веществ, участие в процессах регенерации, участие в образовании оболочека вокруг нервных отростков, участие в передаче импульса. Микроглия Микроглия - это макрофаги мозга, они обеспечивают иммунологические процессы в ЦНС, фагоцитоз, могут оказывать влияние на функции нейронов. Виды: - типичная (ветвистая, покоящаяся), - амебоидная, - реактивная. (см. учебник стр. 283-4) Источник развития: в эмбриональном периоде - из мезенхимы; в последующем могут образоваться из клеток крови моноцитарного ряда, т. е. из костного мозга. Функция — защита от инфекции и повреждения и удаление продуктов разрушения нервной ткани.
НЕРВНЫЕ ВОЛОКНА Состоят из отростка нервной клетки, покрытого оболочкой, которая формируется олигодендроцитами. Отросток нервной клетки (аксон или дендрит) в составе нервного волокна называется осевым цилиндром. Виды: безмиелиновое (безмякотное) нервное волокно, миелиновое (мякотное) нервное волокно.
Безмиелиновые нервные волокна Находятся преимущественно в составе вегетативной нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько (10—20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж неиролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых волокон в этих условиях выявляется как однородный тяж цитоплазмы, «одевающий» осевые цилиндры. Нервный импульс по безмиелиновому нервному волокну проводится как волна деполяризации цитолеммы осевого цилиндра со скоростью 1-2 м/сек. Миелиновые нервные волокна Встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов (шванновских клеток), но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки:
1) внутренний, более толстый, — миелиновый слой,
2) наружный, тонкий, состоящий из цитоплазмы, ядер нейролеммоцитов и нейролеммы.
Миелиновый слой содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии — насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы видны участки волокна,
лишенные миелинового слоя, — узловатые перехваты, или перехваты Ранвье, т.е. границы между соседними леммоцитами. Отрезок волокна между смежными перехватами называется межузловым сегментом. В процессе развития аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. Цитоплазма с ядрами отодвигается на периферию – образуется наружная оболочка или светлая Шванновская оболочка (при окраске осмиевой кислотой). Осевой цилиндр состоит из нейроплазмы, продольных параллельных нейрофиламентов, митохондрий. С поверхности покрыт мембраной – аксолеммой, обеспечивающей проведение нервного импульса. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Нервный импульс в миелиновом нервном волокне проводится как волна деполяризации цитолеммы осевого цилиндра, "прыгающая" (сальтирующая) от перехвата к следующему перехвату со скоростью до 120 м/сек. В случае повреждения только отростка нейроцита регенерация возможна и протекает успешно при наличии определенных для этого условий. При этом, дистальнее места повреждения осевой цилиндр нервного волокна подвергается деструкции и рассасывается, но леммоциты при этом остаются жизнеспособными. Свободный конец осевого цилиндра выше места повреждения утолщается - образуется "колба роста", и начинает расти со скоростью 1 мм/день вдоль оставшихся в живых леммоцитов поврежденного нервного волокна, т.е. эти леммоциты играют роль "проводника" для растущего осевого цилиндра. При благоприятных условиях растущий осевой цилиндр достигает бывшего рецепторного или эффекторного концевого аппарата и формирует новый концевой аппарат. Нервные окончания Нервные волокна заканчиваются концевыми аппаратами — нервными окончаниями. Различают 3 группы нервных окончаний:
1. эффекторные окончания (эффекторы), передающие нервный импульс на ткани рабочего органа,
2. рецепторные (аффекторные, или чувствительные, сенсорные),
3. концевые аппараты, образующие межнейрональные синапсы и осуществляющие связь нейронов между собой.
Эффекторные нервные окончания Эффекторные нервные окончания бывают двух типов: двигательные, секреторные.
Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической, или вегетативной, нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями или моторные бляжки. Нервно-мышечное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна – аксо-мышечного синуса. Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновый слой и погружается в него, вовлекая за собой его плазмолемму и базальную мембрану. Нейролеммоциты, покрывающие нервные терминали, кроме их поверхности, непосредственно контактирующей с мышечным волокном, превращаются в специализированные уплощенные тела глиальных клеток. Их базальная мембрана продолжается в базальную мембрану мышечного волокна. Соединительнотканные элементы при этом переходят в наружный слой оболочки мышечного волокна. Плазмолеммы терминальных ветвей аксона и мышечного волокна разделены синоптической щелью шириной около 50 нм. Синаптическая щель заполнена аморфным веществом, богатым гликопротеидами. Саркоплазма с митохондриями и ядрами в совокупности образует постсинаптическую часть синапса. Секреторные нервные окончания (нейрожелезистые) Они представляют собой концевые утолщения терминален или утолщения по ходу нервного волокна, содержащие пресинаптические пузырьки, главным образом холинергические (содержат ацетилхолин). Рецепторные (чувствительные) нервные окончания Эти нервные окончания — рецепторы, концевые аппараты дендритов чувствительных нейронов, — рассеяны по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов. Соответственно выделяют две большие группы рецепторов: экстерорецепторы и интерорецепторы. В зависимости от восприятия раздражения: механорецепторы, хеморецепторы, барорецепторы, терморецепторы. По особенностям строения чувствительные окончания подразделяют на свободные нервные окончания, т.е. состоящие только из конечных ветвлений осевого цилиндра, несвободные, содержащие в своем составе все компоненты нервного волокна, а именно ветвления осевого цилиндра и клетки глии. Несвободные окончания, кроме того, могут быть покрыты соединительнотканной капсулой, и тогда они называются инкапсулированными. Несвободные нервные окончания, не имеющие соединительнотканной капсулы, называются неинкапсулированными.
Инкапсулированные рецепторы соединительной ткани при всем их разнообразии всегда состоят из ветвления осевого цилиндра и глиальных клеток. Снаружи такие рецепторы покрыты соединительнотканной капсулой. Примером подобных окончаний могут служить весьма распространенные у человека пластинчатые тельца (тельца Фатера — Пачини). В центре такого тельца располагается внутренняя луковица, или колба (bulbus interims), образованная видоизмененными леммоцитами (рис. 150). Миелинивое чувствительное нервное волокно теряет около пластинчатого тельца миелиновый слой, проникает во внутреннюю луковицу и разветвляется. Снаружи тельце окружено слоистой капсулой, состоящей из с/т пластинок, соединенных коллагеновыми волокнами. Пластинчатые тельца воспринимают давление и вибрацию. Они присутствуют в глубоких слоях дермы (особенно в коже пальцев), в брыжейке и внутренних органах. К чувствительным инкапсулированным окончаниям относятся осязательные тельца — тельца Мейснера. Эти структуры овоидной формы. Они располагаются в верхушках соединительнотканных сосочков кожи. Осязательные тельца состоят из видоизмененных нейролеммоцитов (олигодендроцитов) — тактильных клеток, расположенных перпендикулярно длинной оси тельца. Тельце окружено тонкой капсулой. Коллагеновые микрофибриллы и волокна связывают тактильные клетки с капсулой, а капсулу с базальным слоем эпидермиса, так что любое смещение эпидермиса передается на осязательное тельце. К инкапсулированным окончаниям относятся генитальные тельца (в половых органах) и концевые колбы Краузе. К инкапсулированным нервным окончаниям относятся также рецепторы мышц и сухожилий: нервно-мышечные веретена и нервно-сухожильные веретена. Нервно-мышечные веретена являются сенсорными органами в скелетных мышцах, которые функционируют как рецептор на растяжение. Веретено состоит из нескольких исчерченных мышечных волокон, заключенных в растяжимую соединительнотканную капсулу, — интрафузальных волокон. Остальные волокна мышцы, лежащие за пределами капсулы, называются экстрафузальными. Интрафузальные волокна имеют актиновые и миозиновые миофиламенты только на концах, которые и сокращаются. Рецепторной частью интрафузального мышечного волокна является центральная, несокращающаяся часть. Различают и нтрафузальные волокна двух типов: волокна с ядерной сумкой (центральной расширенной части они содержат много ядер) и волокна с ядерной цепочкой (ядра в них расположены цепочкой по всей рецепторной области). Межнейрональные синапсы Синапс - это место передачи нервных импульсов с одной нервной клетки на другую нервную или ненервную клетку. В зависимости от локализации окончаний терминальных веточек аксона первого нейрона различают:
аксодендритические синапсы (импульс переходит с аксона на дендрит), аксосоматические синапсы (импульс переходит с аксона на тело нервной клетки), аксоаксональные синапсы (импульс переходит с аксона на аксон).
По конечному эффекту синапсы делятся: - тормозные; - возбуждающие.
. Электрический синапс - представляет собой скопление нексусов, передача осуществляется без нейромедиатора, импульс может передаваться как в прямом, так и в обратном направлении без какой-либо задержки.
. Химический синапс - передача осуществляется с помощью нейромедиатора и только в одном направлении, для проведения импульса через химический синапс нужно время.
Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, — постсинаптическую часть. В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Синаптические пузырьки содержат медиаторы: ацетилхолин, норадреналин, дофамин, серотонин, глицин, гамма-аминомасляная кислота, серотонин, гистамин, глютамат. Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Пресинаптическая мембрана — это мембрана клетки, передающей импульс (аксолемма). В этой области локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель. Синаптическая щель между пре- и постсинаптической мембранами имеет ширину 20—30 нм. Мембраны прочно прикреплены друг к другу в синаптической области филаментами, пересекающими синаптическую щель. Постсинаптическая мембрана — это участок плазмолеммы клетки, воспринимающий медиаторы генерирующий импульс. Она снабжена рецептор- ными зонами для восприятия соответствующего нейромедиатора.