Хромосомалық мутация
Хромосомалық мутация. Хромосомалық мутация түрлі хромосомалық өзгерістер немесе абберацияларға байланысты болады. Бұл жағдайда хромосомалардың құрылымы өзгереді. Ондай өзгерістер хромосома ішілік және хромосома аралық болып келеді. Хромосома ішілік өзгерістерге мыналар жатады:
1.дефишенсия — хромосома ұштарының жетіспеушілігі; делеция — хромосоманың бір бөлігінің үзіліп түсіп қалуы;
2. делеция— хромосома бөлігінің 180º-қа бұрылуына байланысты гендердің орналасу ретінің өзгеруі;
3.дупликация — хромосоманың белгілі бір бөлігінің екі еселенуі. Хромосома аралық өзгерістерге хромосоманың бір бөлігінің оған ұқсас емес басқа бір хромосомамен ауысып кетуі жатады, оны транслокация дейді. Сол сияқты бұған хромосомалар арасында көпірлердің пайда болуын да жатқызуға болады.
Геномдық мутация
Геномдық мутация – дегеніміз жасушадағы хромосомалар санының өзгеруіне байланысты организмнің белгілері мен қасиеттерінде пайда болатын өзгергіштікті айтады. Геном дегеніміз гапплидті хромососадағы гендердің жиынтығы.Енді осы геномдық мутациянын пайда болу жолын қарастырайық. Хромосома санының тұрақтылығын және оның ұрпақтан ұрпаққа берілуін қамтамасыз ететін жасушаның бөлуін механизмдері митоз мен мейоз екендігі белгілі. Бірақ кейбір жағдайда бұл механизмдер бұзылады да, хромосомалар жасушадағы екі полюске теңдей ажырамайды. Соның салдарынан хромосома саны өзгерген жасушалар пайда болады. Геномдық мутация тұтас гаплоидты жиынтықтың немесе хромосомалар санының көбеюіне немесе азаюына байланысты. Организмдерді хромосомалар саны гаплоидты жиынтыққа еселеніп көбеюіне қарай – полиплоидты, ал еселенбесе – анеуплоидты немесе гетероплоидты организмдер деп атайды. Полиплоидия. Полиплоидты органимздер хромосома санының еселену дәрежесіне қарай 3n – трипдоидті, 4n – тетраплоидті, 5n – пентаплоидті болып бөлінеді. Полиплоидия организмнің түрлі белгілерінің өзгеруіне себеп болады. Сондықтан ол эволюция мен селекция үшін тұқым қуатын өзгергіштіктің маңызды қайнар көзі болып есептеледі. Мысалы, селекционер В.Федоров шығарған қара бидайдың тетраплоидті формасын алсақ, ол диплоидті формасына қарағанда сабағы мықты , дәні ірі салмақты болып өзгерген. Полиплоидияның өзінің екі түрі бар – автоплоидия және аллополиплоидия деп аталады.Егер геномды А деп белгілесек, автодиплоид АА, автотриплоид ААА болады. Әр текті түрлердің геномдарының еселеніп көбеюінің нәтижесінде пайда болатын полиплоидті организмдер аллополиплоидтар немесе амфиплоидтар деп аталады. Аллополиплоидтар әр текті түрлерді будандастыру кезінде пайда болады. Мысалы, Егер будан дарада А мен В гені болса, одан алынған аллополиплоид ААВВ болып келеді. 1924 жылы тұңғыш рет шомыр мен капустаны будандастыру арқылы Г.Д.Карпченконың тұқымы мықты болып өскен. Жаңа форма систематикалық жағынан әр туысқа жататын өсімдіктердің геномдарының бірігуінәтижесінде шығып отыр. Жалпы полиплоидия ның негізінде өсімдіктердің, оның жеке мүшелерінің көлемі ұлғаяды. Полиплоидия – жануарларда өте сирек кездесетін құбылыс. Бұл көбінесе жыныстық көбеюі партогенез жолмен жүретін жәндіктерде кездеседі. Мысал ретінде аскариданы, жер құрттарын, көбелектерді алуға болады. Жануарлардың кейбір ұлпаларының сомалық жасушасында мейоз жолымен емс, митоз жолымен көбейеді. Анеуплоидия немесе Гетероплоидия. Хромосома санының гаплоидті жиынтыққа еселенбей өзгеруініңнәтижесінде пайда болады. Бұл құбылысты алғаш рет К.Бриджес дрозофила шыбыныдарындағы жыныспен тіркесіп тұқым қуу заңдылығын зерттеу барысында байқады. Ол аналық шыбындардың сомалық жасушасынан XXY хромосомалардың (Сонда Y –гі артық ), ал аталықтарынан XO, яғни Y –гі жоқ хромосомаларды тапты. Осыған байланысты дрозофила шыбындырының кейбір белгілерінің (қанаты, көзі және т.б.) кемістікке ұшырайтындығы анықталды.Сонда бір хромосомасы артық жыныс жасушасы қалыпты гаплоидті гаметамен ұрықтанғандахромосома жиынтығы 2n + 1 немесе трисомик зигота түзеді. Ал егер гаметада бір хромасома кем болып келсе, ұрықтану нәтижесінде моносомик, яғни 2n - 1 зигота пайда болады. Мысалы,адамда жыныстық хромосомалардың немесе 21-хромосоманың артық болуы күрделі аномалиялар туғызады. Кейбір жағдайларда хромосоманың белгілі бір жұбында қосымша жалғыз хромосома емес, екі хромосома (2n + 2) тетрасомик үш хромасома (2n + 3) пентасомик болып ауруға ұшырайды.Хромосомалар санының осылайша артуы немесе кемуі олардың кез-келген жұбында кездесуі мүмкін, сондықтан бірмезгілде қатарынанбірнеше анеуплоидия пайда бола алады. Анеуплоидия организмнің генотипі мен фенотипінде белгілі бір өзгерістер туғызады, организмнің тіршілік қабілетін төмендейді, өмірі қысқарады, өсімталдығы кемиді.және қалыпты диплоилтермен салыстырғанда көптеген морфологиялық айырмашылықтары болады.Жануарларға қарағанда өсімдіктерде анеуплоидия олардың тіршілік қабілетіне оншалық әсер етпейді.Анеуполидия құбылысы соның ішінде нулисомия өсімдіктерде жекелеген хромосомаларды алмастырып, жаңа линиялар алу үшін қолданылады.Орыс генетигі Н.И.Вавилов тұқым қуалайтын өзгергіштікті зерттеу барысында систематикалық жағынан бір-біріне жақын тұрған түрлер мен туыстарда кездесетін мутациялардың ұқсас болып келетіндігін анықтады. Соның негізінде өзінің "Тұқым қуалайтын өзгергіштіктегі ұқсас қатарлар” деп аталатын заңын ашты. Бұл заң бойынша шығу тегі жағынан бір-біріне жақын, соған байланысты морфологиялық, физиологиялық және т.б. қасиеттері жағынан ұқсас организмдердің тұқым қуалайтын өзгергіштігі де ұқсас болып келеді. Мысалы, астық тұқымдасына жататын бидай, арпа, сұлы, жүгері, күріш, тары, бидайықтарда дәнінің түсі мен пішіні, өніп-өсуі, пісіп-жетілу мерзімі, суыққа төзімділігі және т.б. қасиеттері жөнінен тұқым қуалайтын өзгергіштіктің ұқсас қатарлары болатындығы анықталған (6-кесте). Сонда осы заңдылыққа сәйкес бір түрде болатын мутациялық өзгергіштікті білу арқылы соған жақын түрлер мен туыстарда ұқсас өзгергіштіктің болатындығы алдын ала болжанады.
Мутагендік факторлар
Мутациялардың пайда болу процесін мутагенез, ал мутациялардың пайда болуына алып келетін физикалық не химиялық факторларды мутагендер деп атайды. Мутациялар еш бір себепсіз, табиғи жолмен пайда болуы мүмкін — оларды өздігінен, кенеттен пайда болған мутациялар дейді; ал кейбіреулері әр түрлі физикалық не химиялық мутагеңдік факторлардың әсері салдарынан пайда болады — оларды индукцияланған мутациялар деп атайды.
Өздігінен пайда болатын гендік мутациялардың жиілігі әр түрлі ағзаларда түрліше болып келеді, мысалы адамдарда ол 10~4—10 6 дәрежесіне тең. Егер адамдардың бір ұрпағының орташа тіршілік ұзақтығы 25—30 жыл, ал мутацияның орташа жиілігі 1х10~5 дәрежесіне тең, адамдардың генотипіндегі гендер саны 100000—110000 деп алсақ, онда адамдардың гаплоидтық хромосома санында (гаметаларда) әрбір ұрпақ сайын 1-10 жаңа мутация пайда болып отырады. Бұл көп пе аз ба? Жеке бір адамды алатын болсақ ол әрине аз, себебі адамдардың бір ұрпағында, яғни 25—30 жыл ішінде түзілетін гаметаларының тек 1—10-ында ғана мутация пайда болады. Ал егер бүкіл адамзатты, яғни тұтас адам популяцияларын алатын болсақ және адамдар гаметаларында не бары 2-ақ мутациядан пайда бодды десек, оңда мутациялардың жалпы саны 8×109 яғни 8 000 000 000 тең болады. Ал бұл әрине өте көп.
Гендік мутациялар ағза белгілерінің түрліше өзгерулеріне алып келеді. Олар доминантты, жартылай доминантты, рецессивті болып келуі мүмкін. Мутантты гендер, қалыпты гендерге қарағанда, өздерінің өнімдерінің — ферменттерінің аз мөлшерде, немесе өте кеп мөлшерде синтезделуіне алып келуі мүмкін, немесе фермент мүлдем синтезделмеуі мүмкін. Яғни, мутация негізінде қалыпты ген өзінің мағынасын біржолата жойып нонсенс — (мағынасыз) кодонға, не оның мағынасы өзгеріп миссенс — кодонға айналуы мүмкін. Гендік мутациялардың ағзалар үшін зияңдылығы — олар тіршілік процесінің бұзылуына (патология), тіршілігінің төмендеуіне не көбею қабілетінің кемуіне алып келеді, яғни ағзалардың ортаға бейімделуін тәмендетеді. Кейде мутантты ген ағзалардың әліп қалуына да алып келеді (летальді мутациялар).
Дегенмен, мутацияларды өте сирек және тосыннан (кенеттен) пайда болатын, белгілі бір бағытқа бағытталмаған құбылыс деп қарастыруымыз керек:
1) мутациялар ете сирек пайда болады, себебі олар репликациялану процесінде ДНҚ синтезінің қателігі күйінде пайда болуы мүмкін. Ал, ДНҚ синтезі қателіксіз жүреді. Тек 100 000 нуклеотидтен біреуі ғана қате синтезделуі мүмкін. Тіпті ДНҚ синтезінде қателік болған күннің өзінде, пайда болған қателік репарация тетіктері арқылы жөнделіп отырады;
2) мутациялардың өте сирек және кездейсоқ болатын тағы бір себебі — олардың нақтылы бір генде, нақтылы ұрпақта пайда болуболмауын күні бұрын болжау мүмкін емес;
3) мутациялар ағзалардың ортаға бейімделушілігін жоғарылатпайды, сондықтан да оларды белгілі бір бағытқа бағытталмаған дейміз.
Ұзақ жылдар бойына хромосомалық және гендік мутациялардың пайда болу себептері белгісіз болып келеді. Сондықтан көптеген ғалымдар мутациялар, әсіресе өздігінен пайда болатын мутациялар, табиғатта сыртқы орта факторларының әсерінсіз пайда болады деген жалған көзқараста болып келді. Тек, гендік мутациялардың санының есебін анықтау әдістері қалыптасқаннан кейін ғана оларды әр түрлі мутагендік факторлар арқылы туғызуға мүмкін екендігі белгілі болды. Оларды физикалық, химиялық және биологиялық мутагендік факторлар деп бөледі.
Физикалық радиациялық мутагенез дегеніміз — әр түрлі физикалық факторлардың — иондаушы сәулелердің, ультракүлгін сәулелерінің т.б. әсерінен пайда болатын мутациялар. Иондаушы сәулелердің мутацияларды туғыза алатындығын алғаш рет 1925 жылы орыс ғалымдары Г.Надсон және С.Филипповтар ашқан. 1927 жылы Г.Меллер рентген сәулелерінің әсерінен дрозофилаларда (жеміс шыбыны) кәптеген мутациялардың пайда болатыңдығын тәжірибе жасап анықтаған. Қазіргі кезде радиациялаушы сәулелердің мутагендік әсері көптеген биологиялық объекттерде дәлелденген.
Радиациялаушы сәулелердің мутагендік механизмі түрліше болып келеді. Олар гендік, хромосомалык, геномдық мутацияларды туғыза алады.
Кейбір химиялық заттардың мутагендік әсерінің болатындығын алғаш рет КСРО-да 1928 жылы Н.Мейсель, 1933 жылы В.Сахаров, 1934 жылы М.Лобашовтар ашқан болатын. Ең алғашқы күшті мутагенді (жасушаға жат ДНҚ) 1939 жылы С.Гершензон ашқан болатын. 1946 жылы генетик И.Рапопорт формалиннің және этилениминнің күшті мутагендік әсері бар екенін анықтады. Сол сияқты, осы жылдары ағылшын генетиктері Ш.Ауэрбах және Д.Робсон иприттің мутагендік әсер ететінін анықтаған.
Қазіргі кезде жүздеген химиялық заттардың мутагеңдік әсерлері айқындалды. Олардың ішінде ауыл шаруашылығында жиі пайдаланатын гербицидтер, дефолианттар және инсектицидтер (ДДТ), кейбір дәрідәрмектер (әсіресе нитрофурондар), әр түрлі өнеркәсіпте пайдаланатын, не өнеркәсіпте бөлініп шығатын заттар, мысалы: тоқыма комбинаттарында пайдаланылатын — афоксид; жасанды шайырларды алуға пайдаланатын — формальдегид; қағаз шығаруға пайдаланатын — гидроксиламин; азық-түлік өнеркәсібінде шараптарды дайындауға пайдаланылатын — натрий бисульфиті; азоттық иприт, 5-бромурацил т.б. Барлық химиялық мутагендер гендік, хромосомалық және геномдық мутацияларды тудыра алады.
Химиялық заттардың мутагеңдік механизмі әлі толық анықталған жоқ, дегенмен, олардың кейбіреулері жасушаның бөлінуі кезеңінде ахроматин жіпшелерін үзіп, олардың қызметін жояды, ал екінші біреулері, мысалы 5-бромурацил ДНҚ молекуласының репликациялануында азоттық негіздердің орнын ауыстырып траңзициялар мен трансверсияларды пайда етеді.
Химиялық мутагендер, радиация сәулелері сияқты, мейоздың бұзылуына алып келіп, хромосомалардың дұрыс ажырасуын болдырмайды не хромосомалардың үзілуіне алып келеді. Кейбір химиялық мутагендер тікелей ДНҚ молекуласына әсер етпей, оның реплекациялану мехаизмі өзгертеді, осының салдарынан ДНҚ синтезінде қателіктер пайда болады. Ондай заттардың бірі – кофеин.
Пайдаланылған әдебиеттер:
Ø Вирусология, иммунология, генетика, молекулалық биология. Орысша-қазақша сөздік. – Алматы, «Ана тілі» баспасы, 1993 жыл. ISBN 5-630-0283-X
Ø Қазақ энциклопедиясы
Жоспар:
v Мутациялық өзгергіштік
v Гендік мутация
v Хромосомалық мутация
v Геномдық мутация
v Мутагендік факторлар