Использование математических моделей менеджмента

В математической модели, называемой также символической, используются символы для описания свойств или характеристик объекта или события. Пример математической модели и аналитической ее силы как средства, помогающего нам понимать исключительно сложные проблемы, — известная формула Эйнштейна Е -- тс . Если бы Эйнштейн не смог построить эту математическую модель, в которой символы заменяют реальность, маловероятно, чтобы у физиков появилась даже отдаленная идея о взаимосвязи материи и энергии.

Вероятно, математические модели относятся к типу моделей, чаще всего используемых при принятии организационных решений. Рас. S.2. иллюстрирует зависимость между объемом производства и издержками, описываемую с помощью модели: С = PV(O,1) + 2500. Согласно этой модели, издержки (С) равны объему производства (PV), умноженному на ОД, плюс 2500. Ниже в данной главе мы рассмотрим некоторые распространенные математические модели. Сначала же исследуем основные этапы построения модели.

Построение модели, как и управление, является процессом. Основные этааы процесса — постановка задачи, построение, проверка на достоверность, применение и обновление модели,

ПОСТАНОВКА ЗАДАЧИ. Первый и наиболее важный этап построения модели, способный обеспечить правильное решение управленческой проблемы, состоит в постановке задачи. Правильное использование математики или компьютера не принесет никакой пользы, если сама проблема не будет точно диагностирована. Согласно Шеннону: «Альберт Эйнштейн однажды сказал, что правильная постановка задачи важнее даже, чем ее решение. Для нахождения приемлемого или оптимального решения задачи нужно знать, в чем она состоит. Как ни просто и прозрачно данное утверждение, чересчур многие специалисты в науке управления игнорируют очевидное. Миллионы долларов расходуются ежегодно на поиск элегантных и глубокомысленных ответов на неверно поставленные вопросы» .

Рассматривая эту тему, Чарлз Дж. Хитч, работавший ранее в министерстве обороны, указывает; «По опыту знаю, что самое трудное для специалиста по системному анализу — не техника анализа. По сути дела, методы, используемые нами в бюро министра обороны, как правило, просты и старомодны. Полезного и продуктивного аналитика отличает умение сформулировать (спроектировать) задачу»7.

Далее, из того только, что руководитель осведомлен о наличии проблемы, вовсе не следует факт идентификации истинной проблемы. Руководитель обязан уметь отличать симптомы от причин. Рассмотрим для примера фармацевтическую компанию, получающую множество жалоб от аптек из-за задержек с выполнением их заказов. Истинная проблема, как оказалось, не в этой задержке. Изучение вопроса показало, что заказы задерживаются из-за производственных затруднений на трех химических предприятиях фирмы. Это было вызвано нехваткой исходных химических реагентов и запасных частей к оборудованию, что в свою очередь было обусловлено некачественным прогнозированием потребности в материалах и запасных частях.

После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить — всели существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом, если задача сложна. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения, если предположить, что модель не слишком сложна в использовании.

Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству совладать с проблемой.

Продолжим наш пример. Если бы модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно было считать полезной, поскольку выходная информация позволила бы руководству принять эффективные корректирующие меры в отношении задержек поставок.

Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если ее удалось бы получить) помочь в разрешении производственных трудностей и ликвидации задержек.




Наши рекомендации