Развитие электрического освещения. Лампы накаливания и их характеристики. Галогенные лампы накаливания и их характеристики
История электрического освещения началась в 1870 году с изобретения лампы накаливания, в которой свет вырабатывался в результате поступления электрического тока. Самые первые осветительные приборы, работающие на электрическом токе появились в начале XIX века, когда было открыто электричество. Эти лампы достаточно неудобными, но, тем не менее, их использовали при освещении улиц. И, наконец, 12 декабря 1876 года русский инженер Павел Яблочков открыл так называемую "электрическую свечу", в которой две угольные пластинки, разделенные фарфоровой вставкой, служили проводником электричества, накалявшего дугу, и служившую источником света. Лампа Яблочкова нашла широчайшее применение при освещении улиц крупных городов. Точку в разработке ламп накаливания поставил американский изобретатель Томас Альва Эдиссон. В его лампах использовался тот же принцип, что и у Яблочкова, однако все устройство находилось в вакуумной оболочке, которая предотвращала быстрое окисление дуги, и поэтому лампа Эдиссона могла использоваться достаточно продолжительное время.
Источники света всегда будут совершенствоваться во времени, пока человечество живо.
1913 г. -Газонаполненная лампа Лангье с вольфрамовой спиралью.
1931 г.- Пирани изобретает натриевую лампу низкого давления.
1958 г. - Первые галогенные лампы накаливания.
1961 г. - Натриевые лампы высокого давления.
1982 г. - Галогенные лампы накаливания низкого напряжения.
1982 г. - Галогенные лампы накаливания низкого напряжения.
1983 г. - Компактные люминесцентные лампы.
Таблица 2. Некоторые характеристики источников излучения
Тип источника излучения | Мощность, Вт | Световой поток, лм | Световая отдача, лм\Вт | Срок службы, час. |
Вакуумные и газонаполненные лампы накаливания общего назначения | 15-1 000 | 85-19 500 | 5-19,5 | 1 000 |
Галогенные лампы накаливания общего назначения | 1 000-2 000 | 22 000-440 000 | 2 000-3 000 | |
Ртутные разрядные люминесцентные лампы | 15-80 | 600-5 400 | 40-65 | 1 000-15 000 |
Ртутные лампы высокого давления | 80-2 000 | 3 400-120 000 | 40-60 | 10000-15 000 |
Ртутные лампы сверхвысокого давления | 120-1 000 | 4 200-53 000 | 35-53 | 100-800 |
Металлогалогенные лампы | 250-3 500 | 19000-350000 | 75-100 | 2 000-10 000 |
Натриевые лампы низкого давления | 85-140 | 6 000-11 000 | 70-80 | 20 000 |
Натриевые лампы высокого давления | 50-1 000 | 25000-47000 | 100-115 | 10000-15 000 |
Ксеноновые лампы | 50-10 000 | 35700-2088 000 | 18-40 | 100-800 |
Лампа накаливания - Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной колбы, заполненной буферным газом и ограждающей нить накала от окружающей среды. Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность. Нить накала в первых лампах делалась из угля (точка сублимации 3559 °C). В современных лампах применяются почти исключительно спирали из осмиево-вольфрамового сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения ленгмюровского слоя.
Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I=U/R) и мощность по формуле P=U·I , или P=U2/R. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40-50 микрон.
Галогенная лампа
Добавление в буферный газ паров галогенов (брома или йода) повышает время жизни лампы до 2000—4000 часов. При этом рабочая температура спирали составляет примерно 3000 К. Эффективность галогенных ламп достигает 28 лм/Вт.
Иод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама. Этот процесс является обратимым — при высоких температурах соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё.
трансформатор и электронный инвертор для питания 12-вольтных галогеновых ламп
Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла выше 250 °C. По причине отсутствия почернения колбы, галогенные лампы можно изготавливать в очень компактном виде. Малый объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжёлыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это удлиняет время жизни галогенных ламп и повышает их эффективность.
Ввиду высокой температуры колбы любые загрязнения поверхности (например, отпечатки пальцев) быстро сгорают в процессе работы, оставляя почернения. Это ведёт к локальным повышениям температуры колбы, которые могут послужить причиной её разрушения. Также из-за высокой температуры, колбы изготавливаются из кварцевого стекла.
Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы. По данным фирмы OSRAM, потребление энергии снижается на 45 %, а время жизни удваивается (по сравнению с обычной галогенной лампой) [1].
Хотя IRC-галогенные лампы не достигают эффективности ламп дневного света, их преимущество состоит в том, что они могут быть использованы как прямая замена обычных галогенных ламп.
17. Явление люминесценции. Люминесцентные лампы и их характеристики. Компактные люминесцентные лампы и их характеристики.
Люминесценция — свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке. Особого внимания люминесценция не привлекала вплоть до 1948 года, когда советский учёный С. И. Вавилов предложил использовать люминесценцию в анализе химических веществ. В быту явление люминесценции используется, главным образом, в люминесцентных лампах и электронно-лучевых трубках кинескопов.
Люминесцентное свечение тел принято делить на следующие виды:
-фотолюминесценция — свечение под действием света (видимого и УФ-диапазона). Она, в свою очередь, делится на -флуоресценцию (время жизни 10-9-10-6 с); =фосфоресценцию (10-3-10 с); -хемилюминесценция — свечение, использующее энергию химических реакций; -катодолюминесценция — вызвана облучением быстрыми электронами (катодными лучами); -сонолюминесценция — люминесценция, вызванная звуком высокой частоты; -рентгенолюминесценция — свечение под действием рентгеновских лучей. -радиолюминесценция — при возбуждении вещества γ-излучением;
-триболюминесценция — люминесценция, возникающая при растирании, раздавливании или раскалывании люминофоров. Триболюминесценция вызывается электрическим разрядами, происходящими между образовавшимися наэлектризованными частями — свет разряда вызывает фотолюминесценцию люминофора.
-электролюминесценция- возникает при пропускании электрического тока через определенные типы люминофоров.
В настоящее время наиболее изучена фотолюминесценция.
У твердых тел различают три вида люминесценции:
-мономолекулярная люминесценция — акты возбуждения и испускания света происходят в пределах одного атома или молекулы;
-метастабильная люминесценция — акты возбуждения и испускания света происходят в пределах одного атома или молекулы, но с участием метастабильного состояния;
-рекомбинационная люминесценция — акты возбуждения и испускания света происходят в разных местах.
Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины волны возбуждающего её света. Наиболее простые — атомные спектры, в которых указанная выше зависимость определяется только электронным строением атома. Спектры молекул гораздо более сложные вследствие того, что в молекуле реализуются различные деформационные и валентные колебания. При охлаждении до сверхнизких температур сплошные спектры люминесценции органических соединений, растворенных в определенном растворителе, превращаются в квазилинейчатые. Это явление получило название эффекта Шпольского. Это ведёт к снижению предела обнаружения и повышению избирательности определений, расширению числа элементов, которые можно определять люминесцентным методом анализа.
Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.
При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.
Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.
Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.
Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.
Компа́ктная люминесце́нтная ла́мпа — люминесцентная лампа, имеющая меньшие размеры по сравнению с колбчатой лампой и меньшую чувствительность к механическим повреждениям. Зачастую встречаются предназначенными для установки в стандартный патрон для ламп накаливания.
Первые компактные люминисцентные лампы появились на рынке в конце 1980-х.
Компактные люминисцентные лампы содержат ртуть и требуют особой утилизации. Перегоревшие люминесцентные лампы можно отнести (в г. Москва) в свой районный ДЕЗ или РЭУ, где установлены специальные контейнеры. Там их должны бесплатно принять. В дальнейшем перегоревшие лампы централизованно сдаются на специальные предприятия, которые и занимаются их переработкой. Основанием для того, чтобы в ДЕЗе приняли у вас лампы, является Распоряжение правительства Москвы «Об организации работ по сбору, транспортировке и переработке отработанных люминесцентных ламп»[1] от 20 декабря 1999 г. № 1010-РЗП.[2] К сожалению, в России на проблему утилизации, обычно, не обращают внимания и лампы часто выбрасываются вместе с обычным мусором.
По сравнению с лампами накаливания имеют более долгий срок службы и расходуют меньше электроэнергии (в среднем до 80 % экономии).
Благодаря применению электронного балласта имеют улучшенные характеристики по сравнению с традиционными люминесцентными лампами — мгновенное включение, отсутствие мерцания и жужжания. Также существуют лампы с системой плавного запуска. Система плавного запуска планомерно увеличивает интенсивность света при включении в течение 1-2 секунд: это продлевает срок службы лампы и позволяет избежать эффекта «временной световой слепоты».
Компактные люминесцентные лампы различаются по типу цоколя на G23,G24Q1, G24Q2 и G24Q3. Выпускаются также лампы под стандартные патроны E14(«миньон»), E27(привычный всем патрон), и E40(для очень мощных ламп), что позволяет использовать их в обычных светильниках вместо ламп накаливания. Преимуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.