Декодирование команд х86 в процессоре Intel Nehalem
Сначала х86 инструкции выбираются из кэш-памяти команд. Если в потоке команд оказывается команда условного перехода (ветвление программы), то включается механизм предсказания ветвления, который формирует адрес следующей выбираемой команды до того, как будет определено условие выполнения перехода. Основной частью блока предсказания ветвлений является ассоциативная память, называемая буфером адресов ветвлений (Branch Target Buffer), в котором хранятся адреса ранее выполненных переходов. Кроме того, ВТВ содержит биты, хранящие предысторию ветвления, которые указывают, выполнялся ли переход при предыдущих выборках данной команды. При поступлении очередной команды условного перехода указанный в ней адрес сравнивается с содержимым ВТВ. Если этот адрес не содержится в ВТВ, то есть ранее не производились переходы по данному адресу, то предсказывается отсутствие ветвления. В этом случае продолжается выборка и декодирование команд, следующих за командой перехода. При совпадении указанного в команде адреса перехода с каким-либо из адресов, хранящихся в ВТВ, производится анализ предыстории. В процессе анализа определяется чаще всего реализуемое направление ветвления, а также выявляются чередующиеся переходы. Если предсказывается выполнение ветвления, то выбирается и загружается в конвейер команда, размещенная по предсказанному адресу.
В дополнение к уже имеющемуся в Intel Core блоку предсказания переходов был добавлен в Nehalem ещё один «предсказатель» второго уровня. Он работает медленнее, чем первый, но зато благодаря более вместительному буферу, накапливающему статистику переходов, обладает лучшей глубиной анализа. Далее разделенные х86 инструкции на простые и сложные организуются в виде очередей на входах четырех декодеров. Декодеры преобразуют х86 команды в микрокоманды, под управлением которых в процессоре выполняются элементарные операции (микрооперации). Как в Intel Core, три декодера используются для обработки простых инструкций, один – для сложных. Каждая простая х86 инструкция преобразуется в 1–2 микрокоманды, а для сложной инструкции из памяти микрокода (u Code ROM) выбирается последовательность микрокоманд (микропрограмма), которая содержит более двух микрокоманд (технология micro-ops fusion). Используя технологию macro fusion, четыре декодера могут обработать одновременно пять х86 команд, преобразуя их в четыре микрокоманды.
В Nehalem увеличилось число пар x86 команд, декодируемых в рамках этой технологии «одним махом». Кроме того, технология macro fusion стала работать и в 64-битном режиме.
Следующее усовершенствование - блок Loop Stream Detector. Этот блок появился впервые в процессорах с микроархитектурой Core и предназначался для ускорения обработки циклов. Определяя в программе циклы небольшой длины, Loop Stream Detector сохранял их в специальном буфере, что давало возможность процессору обходиться без их многократной выборки из кэша и предсказания переходов внутри этих циклов. В процессорах Nehalem блок LSD стал ещё более эффективен благодаря его переносу за стадию декодирования инструкций. Иными словами, теперь в буфере LSD сохраняются циклы в декодированном виде, из-за чего этот блок стал несколько похож на Trace Cache процессоров Pentium 4. Однако, Loop Stream Detector в Nehalem – это особенный кэш. Во-первых, он имеет очень небольшой размер, всего 28 микроопераций, во-вторых, в нём сохраняются исключительно циклы.
После декодирования производится переименование регистров, переупорядочение (Retirement Unit) и сохранение до момента выполнения 128 микрокоманд в буфере.
На следующем этапе планировщик (Scheduler) через станцию резервирования (Reservation Station – RES), вместимостью до 36 инструкций (Intel Core – 32 инструкции), отправляет микрокоманды непосредственно на исполнительные устройства.
Процессоры Nehalem способны отправлять на выполнение до шести микроопераций одновременно. В каждом ядре процессора Intel Nehalem используются три универсальных порта (Port0, Port1, Port5) для связи с различными исполнительными устройствами, два порта (Port3, Port4) для организации записи/загрузки (Store) адреса и данных в память и один (Port2) для организации чтения/выгрузки (Load) данных из памяти. Универсальные порты осуществляют связь с тремя блоками для обработки целочисленных 64-битных данных (ALU), выполнения сдвигов (Shift) и операций сравнения (LEA); с тремя блоками для обработки чисел с плавающей точкой (FAdd, FMul, FPShuffes); с тремя 128-битными блоками для обработки потоковых данных (SSE); с одним блоком для исполнения переходов (Branch); со специальными блоками Divide (деление), Complex Integer (сложные целочисленные операции).
В данном процессоре (ядре), как и в любом другом современном процессоре, реализована конвейерная технология обработки команд. Длина каждого из четырех конвейеров составляет 14 ступеней.