Память вычислительной машины

В любой ВМ, вне зависимости от ее архитектуры, программы и данные хранятся в памяти. Функции памяти обеспечиваются запоминающими устройствами (ЗУ), предназначенными для фиксации, хранения и выдачи информации в процессе работы ВМ.

Перечень основных характеристик, которые необходимо учитывать, рассматривая конкретный вид ЗУ, включает в себя:

а. место расположения;

б. емкость;

в. единицу пересылки;

г. метод доступа;

д. быстродействие;

е. физический тип;

ж. физические особенности;

з. стоимость.

По месту расположения ЗУ разделяют на процессорные, внутренние и внешние. Наиболее скоростные виды памяти (регистры, кэш-память первого уровня) обычно размещают на общем кристалле с центральным процессором, а регистры общего назначения вообще считаются частью ЦП. Вторую группу (внутреннюю память) образуют ЗУ, расположенные на системной плате. К внутренней памяти относят основную память, а также кэш-память второго и последующих уровней (кэш-память второго уровня может также размещаться на кристалле процессора). Медленные ЗУ большой емкости (магнитные и оптические диски, магнитные ленты) называют внешней памятью, поскольку к ядру ВМ они подключаются аналогично устройствам ввода/вывода.

Емкость ЗУ характеризуют числом битов либо байтов, которое может храниться в запоминающем устройстве. На практике применяются более крупные единицы, а для их обозначения к словам “бит” или “байт” добавляют приставки: кило, мега, гига, тера и пр. В вычислительной технике, ориентированной на двоичную систему счисления, они соответствуют значениям достаточно близким к стандартным, но представляющим собой целую степень числа 2.

Важной характеристикой ЗУ является единица пересылки. Для основной памяти (ОП) единица пересылки определяется шириной шины данных, то есть количеством битов, передаваемых по линиям шины параллельно. Обычно единица пересылки равна длине слова, но не обязательно. Применительно к внешней памяти данные часто передаются единицами, превышающими размер слова, и такие единицы называются блоками.

При оценке быстродействия необходимо учитывать применяемый в данном типе ЗУ метод доступа к данным. Различают четыре основных метода доступа:

а. Последовательный доступ. ЗУ с последовательным доступом ориентировано на хранение информации в виде последовательности блоков данных, называемых записями. Для доступа к нужному элементу (слову или байту) необходимо прочитать все предшествующие ему данные. Время доступа зависит от положения требуемой записи в последовательности записей на носителе информации и позиции элемента внутри данной записи. Примером может служить ЗУ на магнитной ленте.

б. Прямой доступ. Каждая запись имеет уникальный адрес, отражающий ее физическое размещение на носителе информации. Обращение осуществляется как адресный доступ к началу записи, с последующим последовательным доступом к определенной единице информации внутри записи. В результате время доступа к определенной позиции является величиной переменной. Такой режим характерен для магнитных дисков.

в. Произвольный доступ. Каждая ячейка памяти имеет уникальный физический адрес. Обращение к любой ячейке занимает одно и то же время и может производиться в произвольной очередности. Примером могут служить запоминающие устройства основной памяти.

г. Ассоциативный доступ. Этот вид доступа позволяет выполнять поиск ячеек, содержащих такую информацию, в которой значение отдельных битов совпадает с состоянием одноименных битов в заданном образце. Сравнение осуществляется параллельно для всех ячеек памяти, независимо от ее емкости. По ассоциативному принципу построены некоторые блоки кэш-памяти.

Быстродействие ЗУ является одним из важнейших его показателей. Для количественной оценки быстродействия обычно используют три параметра:

а. Время доступа. Для памяти с произвольным доступом оно соответствует интервалу времени от момента поступления адреса до момента, когда данные заносятся в память или становятся доступными. В ЗУ с подвижным носителем информации – это время, затрачиваемое на установку головки записи/считывания (или носителя) в нужную позицию.

б. Длительность цикла памяти или период обращения. Понятие применяется к памяти с произвольным доступом, для которой оно означает минимальное время между двумя последовательными обращениями к памяти. Период обращения включает в себя время доступа плюс некоторое дополнительное время. Дополнительное время может требоваться для затухания сигналов на линиях, а в некоторых типах ЗУ, где считывание информации приводит к ее разрушению, – для восстановления считанной информации.

в. Скорость передачи. Это скорость, с которой данные могут передаваться в память или из нее. Для памяти с произвольным доступом она равна 1/Время доступа.

Говоря о физическом типе запоминающего устройства, необходимо упомянуть три наиболее распространенных технологии ЗУ – это полупроводниковая память; память с магнитным носителем информации, используемая в магнитных дисках и лентах; и память с оптическим носителем – оптические диски.

В зависимости от примененной технологии следует учитывать и ряд физических особенностей ЗУ, например энергозависимость. В энергозависимой памяти информация может быть искажена или потеряна при отключении источника питания. В энергонезависимых ЗУ записанная информация сохраняется и при отключении питающего напряжения. Магнитная и оптическая память – энергонезависимы. Полупроводниковая память может быть как энергозависимой, так и нет, в зависимости от ее типа. Помимо энергозависимости нужно учитывать, приводит ли считывание информации к ее разрушению.

Стоимость ЗУ принято оценивать отношением общей стоимости ЗУ к его емкости в битах, то есть стоимостью хранения одного бита информации.

Основная память

Основная память (ОП) представляет собой единственный вид памяти, к которой ЦП может обращаться непосредственно (исключение составляют лишь регистры центрального процессора). Информация, хранящаяся на внешних ЗУ, становится доступной процессору только после того, как будет переписана в основную память.

Основную память образуют запоминающие устройства с произвольным доступом. Такие ЗУ образованы как массив ячеек. Каждая ячейка содержит фиксированное число запоминающих элементов и имеет уникальный адрес, позволяющий различать ячейки при обращении к ним для выполнения операций записи и считывания.

Основная память может включать в себя два типа устройств: оперативные запоминающие устройства (ОЗУ) и постоянные запоминающие устройства (ПЗУ).

Преимущественную долю основной памяти образует ОЗУ, называемое оперативным, потому что оно допускает как запись, так и считывание информации, причем обе операции выполняются однотипно, практически с одной и той же скоростью, и производятся с помощью электрических сигналов. В англоязычной литературе ОЗУ соответствует аббревиатура RAM – Random Access Memory, то есть “память с произвольным доступом”, что не совсем корректно, поскольку памятью с произвольным доступом являются также ПЗУ и регистры процессора. Для большинства типов полупроводниковых ОЗУ характерна энергозависимость – даже при кратковременном прерывании питания хранимая информация теряется. Микросхема ОЗУ должна быть постоянно подключена к источнику питания и поэтому может использоваться только как временная память. ОЗУ делятся на синхронные и асинхронные, статические и динамические. Операции с синхронными ОЗУ производятся в одно и то же время с тактовыми импульсами ЦП, асинхронные – соответственно в произвольные моменты времени. В статических ОЗУ запоминающий элемент может хранить записанную информацию неограниченно долго (при наличии питающего напряжения). Запоминающий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и статические, энергозависимы.

Вторую группу полупроводниковых ЗУ основной памяти образуют энергонезависимые микросхемы ПЗУ (ROM – Read-Only Memory). ПЗУ обеспечивает считывание информации, но не допускает ее изменения (в ряде случаев информация в ПЗУ может быть изменена, но этот процесс сильно отличается от считывания и требует значительно большего времени). ПЗУ делятся на ПЗУ, программируемые при изготовлении; однократно программируемые ПЗУ; многократно программируемые ПЗУ (EPROM – Erasable Programmable ROM – стираемые программируемые ПЗУ; EEPROM –Electrically Erasable Programmable ROM – электрически стираемые ПЗУ; флеш-память).

Внешняя память

Важным звеном в иерархии запоминающих устройств является внешняя, или вторичная память, реализуемая на базе различных ЗУ. Наиболее распространенные виды таких ЗУ – это магнитные и оптические диски и устройства на базе магнитной ленты.

1. Магнитные диски. Информация в ЗУ на магнитных дисках (МД) хранится на плоских металлических или пластиковых пластинах (дисках), покрытых магнитным материалом. Данные записываются и считываются с диска с помощью электромагнитной катушки, называемой головкой считывания/записи, которая в процессе считывания и записи неподвижна, в то время как диск вращается относительно нее. При записи на головку считывания/записи подаются электрические импульсы, намагничивающие участок поверхности под ней, причем характер намагниченности поверхности различен в зависимости от направления тока в катушке. Считывание базируется на электрическом токе, наводимом в катушке головки, под воздействием перемещающегося относительно нее магнитного поля. Когда под головкой проходит участок поверхности диска, в катушке наводится ток той же полярности, что использовался для записи информации. Несмотря на разнообразие типов магнитных дисков, принципы их организации обычно однотипны. Данные на диске организованы в виде набора концентрических окружностей, называемых дорожками. Каждая из них имеет ту же ширину, что и головка. Соседние дорожки разделены промежутками. Это предотвращает ошибки из-за смещения головки или из-за интерференции магнитных полей. Как правило, для упрощения электроники принимается, что на всех дорожках может храниться одинаковое количество информации. Таким образом, плотность записи увеличивается от внешних дорожек к внутренним. Обмен информацией с МД осуществляется блоками. Размер блока обычно меньше емкости дорожки, и данные на дорожке хранятся в виде последовательных областей – секторов, разделенных между собой промежутками. Размер сектора равен минимальному размеру блока. Типовое число секторов на дорожке колеблется от 10 до 100. При такой организации должны быть заданы точка отсчета секторов и способ определения начала и конца каждого сектора. Все это обеспечивается с помощью форматирования, в ходе которого на диск заносится служебная информация, недоступная пользователю и используемая только аппаратурой дискового ЗУ. Метод записи/чтения у МД может быть как контактный (гибкие магнитные диски), так и бесконтактный (НЖД типа “Винчестер”).

2. Оптические диски. В 1983 году была представлена первая цифровая аудиосистема на базе компакт-дисков (CD – compact disk). Компакт-диск – это односторонний диск, способный хранить более чем 60-минутную аудиоинформацию. Громадный коммерческий успех CD способствовал развитию технологии дешевых оптических запоминающих устройств для ВМ. За последующие годы были созданы различные системы памяти на оптических дисках, три из которых в прогрессирующей степени приживаются в вычислительных машинах: CD-ROM, WORM и стираемые оптические диски.

а. CD-ROM. Для аудио компакт-дисков и CD-ROM используется идентичная технология. Основное отличие состоит в том, что проигрыватели CD-ROM более прочные и содержат устройства для исправления ошибок, обеспечивающие корректность передачи данных с диска в ВМ. Диск изготавливается из пластмассы, например поликарбоната, и покрыт окрашенным слоем с высокой отражающей способностью, обычно алюминием. Цифровая информация заносится в виде микроскопических углублений в отражающей поверхности. Запись информации производится с помощью сильно сфокусированного луча лазера высокой интенсивности. Так создается так называемый мастер-диск, с которого затем печатаются копии. Углубления на копии защищаются от пыли и повреждений путем покрытия поверхности диска прозрачным лаком. Информация с диска считывается маломощным лазером, расположенным в проигрывателе. Лазер освещает поверхность вращающегося диска сквозь прозрачное покрытие. Интенсивность отраженного луча лазера меняется, когда он попадает в углубление на диске. Эти изменения фиксируются фотодетектором и преобразуются в цифровой сигнал. Углубления, расположенные ближе к центру диска, перемещаются относительно луча лазера медленнее, чем более удаленные. Из-за этого необходимы меры для компенсации различий в скорости так, чтобы лазер мог считывать информацию с постоянной скоростью. Одно из возможных решений аналогично применяемому в магнитных дисках - увеличение расстояния между битами информации, в зависимости от ее расположения на диске. В этом случае диск может вращаться с неизменной скоростью и, соответственно, такие дисковые ЗУ известны как устройства с постоянной угловой скоростью (CAV, Constant Angular Velocity). Ввиду нерационального использования внешней части диска метод постоянной угловой скорости в CD-ROM не поддерживается. Вместо этого информация по диску размещается в секторах одинакового размера, которые сканируются с постоянной скоростью за счет того, что диск вращается с переменной скоростью. В результате углубления считываются лазером с постоянной линейной скоростью (CLV, Constant Linear Velocity). При доступе к информации у внешнего края диска скорость вращения меньше и возрастает при приближении к оси. Емкость дорожки и задержки вращения возрастают по мере смещения от центра к внешнему краю диска. Выпускаются CD различной емкости. В типовом варианте расстояние между дорожками составляет 1,6 мкм, что, с учетом промежутков между дорожками, позволяет обеспечить 20344 дорожки. Фактически же, вместо множества концентрических дорожек, имеется одна дорожка в виде спирали, длина которой равна 5,27 км. Постоянная линейная скорость CD-ROM – 1,2 м/с, то есть для “прохождения” спирали требуется 4391с. или 73,2 мин. Именно эта величина составляет стандартное максимальное время проигрывания аудиодиска. Так как данные считываются с диска со скоростью 176,4 Кбайт/с, емкость CD равна 774,57 Мбайт. Данные на CD-ROM организованы как последовательность блоков, содержащих определенные поля.

б. WORM. Технология дисков WORM – дисков с однократной записью и многократным считыванием, была разработана для мелкосерийного производства оптических дисков. Такие диски предполагают ввод информации лучом относительно мощного лазера. При этом пользователь с помощью несколько более дорогого, чем CD-ROM, устройства может единожды записать информацию, а затем многократно ее считывать. Для обеспечения более быстрого доступа в устройстве поддерживается метод постоянной угловой скорости при относительном снижении емкости. Типовая техника подготовки такого диска предполагает мощный лазер для создания на поверхности диска последовательности пузырьков. Для записи информации предварительно отформатированный пузырьками диск помещается в накопитель WORM, где имеется маломощной лазер, тепла от которого тем не менее достаточно для того, чтобы “взорвать” пузырек. В процессе операции считывания лазер в накопителе WORM освещает поверхность диска. Так как “взорванный” пузырек создает более высокий контраст, чем окружающая поверхность, его легко распознать с помощью простой электроники. Данный тип носителя привлекателен для архивного хранения документов и файлов.

в. EOD – оптические диски со стиранием. Среди многих рассматривавшихся технологий оптических дисков с возможностью многократной записи и перезаписи информации коммерчески приемлемой оказалась только магнитооптическая. В таких системах энергия лазерного луча используется совместно с магнитным полем. Запись и стирание информации происходят за счет реверсирования магнитных полюсов маленьких областей диска, покрытого магнитным материалом. Лазерный луч нагревает облучаемое пятно на поверхности, и в этот момент магнитное поле может изменить ориентацию магнитных полюсов на облучаемом участке. Поскольку процесс поляризации не вызывает физических изменений на диске, ему не страшны многократные повторения. При чтении направление магнитного поля можно определить по поляризации верного луча. Поляризованный свет, отраженный от определенного пятна, изменяет свой угол отражения в зависимости от характера намагниченности.

В современное время для записи цифровой информации используются также диски, предназначенные для записи видеоинформации (формат DVD) емкостью от 4,7 Гбт до 18,8 Гбт на диск. Типы их соответствуют типам, принятым для CD-дисков.

3. Магнитные ленты. ЗУ на базе магнитных лент используются в основном для архивирования информации. Носителем служит тонкая полистироловая лента шириной от 0,38-2,54 см и толщиной около 0,025 мм, покрытая магнитным слоем. Лента наматывается на бобины различного диаметра. Данные записываются последовательно, байт за байтом, от начала ленты до ее конца. Время доступа к информации на магнитной ленте значительно больше, чем у ранее рассмотренных видов внешней памяти. Обычно вдоль ленты располагается 9 дорожек, что позволяет записывать поперек ленты байт данных и бит паритета. Информация на ленте группируется в блоки – записи. Каждая запись отделяется от соседней межблочным промежутком, дающим возможность позиционирования головки считывания/записи на начало любого блока. Идентификация записи производится по полю заголовка, содержащемуся в каждой записи. Для указания начала и конца ленты используются физические маркеры в виде металлизированных полосок, наклеиваемых на магнитную ленту, или прозрачных участков на самой ленте. Известны также варианты маркирования начала и конца ленты путем записи на нее специальных кодов-индикаторов. В универсальных ВМ обычно применяются бобинные устройства с вакуумными системами стабилизации скорости перемещения ленты. В них скорость перемещения ленты составляет около 300 см/с, плотность записи – 4 Кбайт/см, а скорость передачи информации – 320 Кбайт/с. Типовая бобина содержит 730 м магнитной ленты. В ЗУ на базе картриджей используются кассеты с двумя катушками, аналогичные стандартным аудиокассетам. Типовая ширина ленты – 8 мм. Наиболее распространенной формой таких ЗУ является DAT (Digital Audio Tape). Данные на ленту заносятся по диагонали, как это принято в видеокассетах. По размеру такой картридж примерно вдвое меньше, чем обычная компакт-кассета, и имеет толщину 3,81 мм. Каждый картридж позволяет хранить несколько гигабайтов данных. Время доступа к данным невелико (среднее между временами доступа к дискетам и к жестким дискам). Скорость передачи информации выше, чем у дискет, но ниже, чем у жестких дисков. Вторым видом ЗУ на базе картриджей является устройство стандарта DDS (Digital Data Storage). Этот стандарт был разработан в 1989 году для удовлетворения требований к резервному копированию информации с жестких дисков в мощных серверах и многопользовательских системах. В сущности, это вариант DAT, обеспечивающий хранение 2 Гбайт данных при длине ленты 90 м. В более позднем варианте стандарта DDS-DC (Digital Data Storage – Data Compression) за счет применения методов сжатия информации емкость ленты увеличена до 8 Гбайт. Наконец, третий вид ЗУ на базе картриджей также предназначен для резервного копирования содержимого жестких дисков, но при меньших объемах такой информации. Этот тип ЗУ отвечает стандарту QIC (Quarter Inch Cartridge tape) и более известен под названием стример. Известны стримеры, обеспечивающие хранение от 15 до 525 Мбайт информации. В зависимости от информационной емкости и фирмы-изготовителя изменяются и характеристики таких картриджей. Так, число дорожек может варьироваться в диапазоне от 4 до 28, длина ленты – от 36 до 300 м и т. д. У современных НМЛ емкость хранимой информации достигает величин сотен Гбт.

Литература

1. Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. – СПб.: Питер, 2004. – 668с.: ил.

2. Боборыкин А.В., Липовецкий Г.П., Литвинский Г.В. и др. Однокристальные микроЭВМ. – М.: МИКАП, 1994. – 400с.

3. Евстифеев А.В. Микроконтроллеры AVR семейств Tiny и Mega фирмы Atmel, 2-е изд., стер. – М.: Издательский дом “Додэка-XXI”, 2005. – 560с.

Оглавление

Основные понятия курса.. 1

Эволюция средств автоматизации вычислений.. 2

Концепция машины с хранимой в памяти программой.. 5

Форматы команд.. 8

Способы адресации.. 9

Фон-неймановская архитектура.. 13

Структуры вычислительных машин.. 15

Структуры вычислительных систем.. 17

Классификация архитектур системы команд.. 18

Классификация по составу и сложности команд 19

Классификация по месту хранения операндов 21

Работа фон-неймановской вычислительной машины... 23

Функциональная схема фон-неймановской вычислительной машины 23

Микрооперации и микропрограммы 28

Цикл команды 29

Память вычислительной машины... 31

Основная память 33

Внешняя память 34

Литература.. 38

Наши рекомендации