Основы проектирования стальных каркасов высотных зданий и сооружений.
Высотными считаются здания высотой 20 этажей и более. Каркас таких зданий может быть стальным с жесткими сварными узлами в продольном и поперечном направлении; связевой системы с металлическими колоннами, горизонтальными и раскосными связями и железобетонным ядром жестокости; комбинированным — стальные и железобетонные колонны с монолитными или сборными стенками жесткости.
Конструктивные системы каркасов зданий зданий и материалы для устройства несущих конструкций надземных частей высотных зданий выбираются на основании:
- требований технического задания на проектирование;
- укрупненных технико-экономических показателей вариантов строительства;
- объемно-планировочных решений зданий;
- анализа работы конструктивных систем на восприятие расчетных нагрузок, а также особых воздействий при возникновении чрезвычайных ситуаций;
- требований по противопожарной защите;
- требований комплексной безопасности, включая антитеррористическую защищенность и устойчивость зданий к прогрессирующему обрушению.
В качестве несущей основы задний первоначально конструктора зданий отдавали предпочтение стальным каркасам благодаря высокой его прочности. В последнее же время всё больнее применение находят железобетонные каркасы.
Стальной каркас рамной конструкции формируется из сварных колонн высотой в несколько этажей и жестко связанных с ними стальных ригелей двутаврового сечения с нижней уширенной полкой, на которую укладываются плиты перекрытия. При связевой схеме кроме стальных колонн и связей используются железобетонные диафрагмы жестокости. При комбинированном каркасе используются колонны в виде металлических сердечников из стандартных профилей, заключенных в железобетонную обойму, и сборные железобетонные ригели. Колонны верхних этажей могут быть сборными железобетонными. Для зашиты от огня и в целях повышения срока службы стальные колонны обетонировываются или оштукатуриваются по сетке. Торцы стальных колонн (или сердечников) обрабатываются фрезерованием. После выверки и закрепления болтами они обвариваются по контуру.
Стыки железобетонных колонн выполняются преимущественно в виде выпусков рабочей арматуры, свариваемых встык ванной сваркой на высоте 0,8... 1,2 м от уровня перекрытия. Для обеспечения устойчивости каркаса в период возведения стыки следует немедленно обетонировывать.
Междуэтажные перекрытия могут быть сборными железобетонными из многопустотных или беспустотных ТТ-образных плит, а также сборно-монолитными.
Ядро жесткости обычно выполняется в монолитном варианте.
Для обеспечения устойчивости каркаса и включения в работу в период монтажа всего диска междуэтажного перекрытия узлы сопряжения перекрытия с колоннами, ригелями и ядром жесткости, а также швы между плитами замоноличивают сразу после окончания крановой сборки этажа.
При проектировании каркасов следует учитывать, что предельные горизонтальные перемещения верха высотных зданий с учетом крена фундаментов при расчете по недеформированной схеме в зависимости от h (где h – расстояние от верха фундамента до верха несущих конструкций покрытия) не должны превышать:
до 150 м (включительно) - 1/500;
при h = 200 м - 1/600,
при высотах от 150 до 200 м значения предельных горизонтальных перемещений следует определять по интерполяции.
Жесткость каркасов зданий в условиях нормальной эксплуатации следует назначать из условий обеспечения нормальной работы инженерного и технологического оборудования зданий, а также комфортных условий пребывания людей по критерию ускорений колебаний.
Для обеспечения комфортного пребывания людей в высотных зданиях ускорение колебаний перекрытий пяти верхних этажей при действии ветровой нагрузки не должно превышать 0,08 м/с2.
При проектировании каркаса зданий, их частей и отдельных элементов следует предусматривать материалы, обеспечивающие при проектных воздействиях упруго-пластическую работу бетона и упругую работу стали, а при особых воздействиях – развитие пластических деформаций в пределах, обеспечивающих локализацию возможных разрушений и общую устойчивость зданий
69. Каркасы большепролетных зданий. Балочные, рамные и арочные системы большепролетных зданий. Пространственные системы большепролетных зданий. Структурные плиты, стальные оболочки, купола. Висячие и мембранные системы.
Каркас здания - это комплекс несущих конструкций, воспринимающий и передающий на фундаменты нагрузки от веса ограждающих конструкций, технологического оборудования, атмосферные нагрузки и воздействия, нагрузки от внутрицехового транспорта (мостовые, подвесные, консольные краны), температурные технологические воздействия и т.п.
Материал несущих конструкций каркаса - из железобетона, смешанные (т.е. часть конструкций — железобетонные, часть — стальные) и стальные. Выбор материала каркаса является важной технико-экономической задачей.
Конструктивные элементы каркаса: Колонны, Болтовые соединения, Ригели междуэтажных перекрытий
В балочных, рамных и арочных системах покрытий, состоящих из отдельных несущих элементов, нагрузка передаётся только в одном направлении — вдоль несущего элемента. В этих системах покрытий несущие элементы соединены между собой лёгкими связями, которые не предназначены для перераспределения нагрузок между несущими элементами, а только обеспечивают их пространственную устойчивость, т.е. с их помощью обеспечивается жёсткий диск покрытия.
Балочные системы (как правило, фермы) включаются в состав поперечных рам, что улучшает статическую схему работы. Балочные большепролётные конструкции покрытий состоят из главных несущих поперечных конструкций в виде плоских или пространственных ферм (пролёт ферм от 40 до 100 м) и промежуточных конструкций в виде связей, прогонов и кровельного настила. Рамные конструкции для покрытий зданий применяют при пролёте L=40 — 150м, при пролёте L > 150м они становятся неэкономичными.
Преимущества рамных конструкций по сравнению с балочными — это меньший вес, большая жёсткость и меньшая высота ригелей. Недостатки — большая ширина колонн, чувствительность к неравномерным осадкам опор и изменениям температур.
Рамные конструкции эффективны при погонных жесткостях колонн, близких к погонным жесткостям ригелей, что позволяет перераспределить усилия от вертикальных нагрузок и значительно облегчить ригели. При перекрытии больших пролётов применяют, как правило, двухшарнирные и бесшарнирные рамы самых разнообразных очертаний. Бесшарнирные рамы более жёсткие и экономичные по расходу материала, однако, они требуют устройства мощных фундаментов, чувствительны к изменению То.
При больших пролётах и нагрузках ригели рам конструируют как тяжёлые фермы, при сравнительно малых пролётах (40-50м) они имеют такие же сечения и узлы, как лёгкие фермы. Поперечные сечения рам аналогичны балочным фермам.
Арочные конструкции покрытий большепролётных зданий оказываются более выгодными по затрате материала, чем балочные и рамные системы. Однако в них возникает значительный распор, который передаётся через фундаменты на грунт или устраивается затяжка для его восприятия (т.е. погашение распора внутри системы). Схемы и очертания арок весьма разнообразны: двухшарнирные, трёхшарнирные, бесшарнирные (см. рис. 3). Наиболее выгодная высота арок: f=1/4 ч 1/6 пролёта L.
Самыми распространёнными являются двухшарнирные арки — они экономичны по расходу материала, просты в изготовлении и монтаже легко деформируются вследствие свободного поворота в шарнирах в них не возникает значительных дополнительх напряжений от То и осадок опор.
Перекрёстные конструкции представляют собой системы взаимно пересекающихся балок и ферм (рис. 13).
Балки или фермы могут располагаться вертикально или наклонно. В местах пересечения они жёстко скреплены между собой, что обеспечивает статическую работу всей системы как единого целого в виде пространственной плиты, опёртой на колонны по периметру. Эффект пространственной работы перекрестных систем тем заметнее, чем ближе очертания перекрываемого плана к квадрату, по условиям равномерного распределения усилий в двух направлениях
Материалом перекрестных конструкций может служить металл, железобетон и дерево.
По сравнению с плоскостными конструкциями покрытия перекрестные конструкции имеют ряд преимуществ: – примерно вдвое меньшую строительную высоту, поэтому они являются более экономичными по расходу металла; – малую строительную высоту покрытия или перекрытия, что позволяет снизить общий объём здания; – значительную жесткость покрытия, что дает возможность крепить к нему подвесное оборудование; – повышенную степень надёжности покрытия от внезапного разрушения благодаря многосвязанности системы; – разнообразную область применения конструкции.
СТРУКТУРНЫЕ КОНСТРУКЦИИ ПОКРЫТИЯ . Стержневые металлические структуры
Стержневые структуры представляют собой систему пространственных перекрещивающихся ферм из металлических труб или прокатных профилей (уголок, двутавр, швеллер). Верхний и нижний пояса структурной плиты из стержневых элементов образуются из квадратных ячеек (рис. 17).
Конструкции узловых элементов чрезвычайно разнообразны. Для трубчатых элементов наиболее логична конструкция узла, где главным соединительным звеном является болт, соосный со стержнями и работающий на продольные усилия. Существуют две композиционные схемы этого узла: болт, выходя из трубчатого стержня, ввинчивается в узловой элемент; болт, выходя из узлового элемента, ввинчивается в трубчатый стержень. По первой схеме выполнен изобретенный в довоенные годы в Германии узел «Меро», отличающийся универсальностью и простотой монтажа и считающийся наиболее совершенным из всех существующих, а также созданный на его основе узел «МАрхи» (рис. 18).
Структурное покрытие является прежде всего стержневой плитой, поэтому основные принципы проектирования сплошных плит справедливы и для них.
1. Наиболее выгодной формой прямоугольных плит является квадратная.
2. Чем чаще расположены опоры по контуру, тем лучше, хотя польза от слишком частого их расположения становится незаметной. В наихудших условиях работает плита, опертая по углам.
3. Эффективен конструктивный прием постановки опор с некоторым отступом от контура покрытия. Образующиеся консольные свесы способствуют снижению величин изгибающих моментов в пролете, причем создается самостоятельный планировочный модуль, легко поддающийся блокировке с другими подобными модулями.
Сплошностенчатые структурные конструкции не типичны для исполнения в металле.
3.2. Армоцементное структурное покрытие
Конструктивные формы структурных покрытий из древесных материалов, пластмасс, железобетона и армоцемента основаны на использовании форм сплошностенчатых пирамид, чаще всего четырехгранных. Возможны два способа расположения пирамид – вершинами книзу и вершинами кверху. Каждый из них формирует свою специфическую пластику потолка и решающим образом влияет на интерьер
Применение структурных конструкций в современном строительстве позволяет:
– перекрывать помещения с любой конфигурацией плана;
– существенно облегчать массу покрытия, повышая за счет этого эффективность работы конструкции на полезные напряжения;
– за счет многократной повторяемости унифицировать элементы и узловые детали, обеспечивать их поточное изготовление.
– легко и удобно транспортировать сборные элементы;
– свести работу на строительной площадке к простой быстрой сборке элементов. Недостатками является: повышенная трудоёмкость изготовления элементов и трудность выполнения узлов по сравнению с традиционными.
Оболочкой называется пространственная конструкция, форма которой образована перемещением образующей по направляющей. В зависимости от формы образующей и направляющей оболочки подразделяют на оболочки одинарной положительной кривизны (цилиндрические оболочки), конусоидальные оболочки (складки), оболочки двойной положительной кривизны, оболочки отрицательной гауссовой кривизны. Конструкция оболочки состоит из трех основных элементов – тонкой оболочки, бортовых элементов и торцевых диафрагм. Материалом для устройства оболочек может служить железобетон, дерево, армоцемент, металл. Железобетонные оболочки выполняются в виде монолитных конструкций. При классификации оболочек, определяющее значение имеет признак статической работы конструкции. По этому признаку оболочки подразделены на два класса – распорные и безраспорные. К безраспорным оболочкам относятся цилиндрические и конусоидальные (складки) оболочки. Данные конструкции могут воспринимать распор только за счёт специально установленных диафрагм. К распорным относятся купола, своды и оболочки отрицательной кривизны. Оболочки нулевой гауссовой кривизны, применяемые для покрытия прямоугольных помещений, могут быть гладкими, ребристыми, складчатыми, цилиндрического и параболического очертания.
Современные тонкостенные конструкции куполов принадлежат к наиболее экономичным пространственным конструкциям, которые позволяют перекрыть пролеты до 150 м при толщине оболочки в 1/600–1/800 пролета. В классических каменных куполах это соотношение составляет 1/10–1/12 пролета. Однако основные отличия современных купольных конструкций от традиционных связаны со своеобразием формы поверхности (волнистой, складчатой), обусловленной необходимостью повышения местной устойчивости тонкостенной оболочки. Купол, в основании которого круг, имеет поверхность, образованную вращением кривой (арки) вокруг центральной оси. В зависимости от образующей кривой купола могут иметь сферическую форму, параболическую, стрельчатую и эллиптическую (рис. 32). Преимуществом купольных конструкций является равномерное распределение усилий по конструктивному элементу, что приводит к наиболее эффективному использованию материала. Жесткость конструкции порождает сама форма, так как она не развертывается в плоскость, тем самым образуется дополнительный резерв несущей способности конструкции. Выпуклая форма купольных покрытий обеспечивает простую систему водоотвода.
При применении данных конструкций можно отметить следующие недостатки: 1) увеличивается строительный объем помещений, особенно при большой стреле подъема; 2) они неблагоприятны в акустическом отношении, так как форма покрытия способствует фокусированию звуковой энергии. Наибольшая фокусировка звука имеет место в тех случаях, когда радиус кривизны купола близок к высоте помещения; 3) для возведения купольных покрытий необходимы специальные устройства (леса, подмости). Современные купола решаются из железобетона, армоцемента, металла и дерева, могут быть решены в сплошных и стержневых конструкциях. В куполах, так же, как и в арках, возникает распор, который воспринимается нижним опорным кольцом. Кольцо воспринимает растягивающее усилие. В верхней части купола устраивают верхнее опорное кольцо, которое служит для аэрации и освещения здания, а также оно необходимо для ведения монтажных работ по устройству купола. В верхнем опорном кольце возникают снимающие усилия. По конструктивным формам купольные покрытия могут быть гладкими, ребристыми, ребристо-кольцевыми, сетчатыми, геодезическими, волнистыми и складчатыми.
1. Гладкий купол . Конструкция гладкого купола наиболее экономична, применяется в монолитном строительстве для покрытий диаметром до 150 м. Купол имеет внутреннюю и внешнюю гладкие поверхности и осуществляется из монолитного железобетонного кольца.
2. Ребристые купола образуются при помощи полуарок прямоугольного сечения, по которым укладывается ограждающая конструкция. Ребра опираются на нижнее растянутое и верхнее сжатое опорные кольца. Между ребрами устанавливаются прогоны и связевые элементы, обеспечивающие пространственную жесткость купола. Ребристые конструкции предусматривают в конструкциях сборных куполов диаметром до 70 м.
3. Ребристо-кольцевые купола имеют не только меридиональные ребра, но и равномерно-распределенные по высоте купола горизонтальные кольца, играющие роль жестких железобетонных связей. Толщина оболочки купола ≈1/600 от пролёта. Например, при пролете L = 90 м: δ1 = 150 мм – толщина у верхнего опорного кольца; δ2 = 310 мм – толщина у нижнего опорного кольца.
Все нагрузки воспринимают элементы колец и полуарок, поэтому ограждающие конструкции могут быть очень легкими; допустимо применение остекления.
4. Сетчатый купол . Сетчатый купол представляет собой систему стержней с узловыми соединениями, вписанными в сферическую поверхность.
Для уменьшения деформативности стержневая сетка должна максимально соответствовать форме криволинейной поверхности купола, что достигается изменением размеров элементов сетки, начиная от опорного кольца и до вершины (диаметр трубы внутри 12 мм, вверху – 38 мм).
5. Геодезический купол – это многогранник, имеющий треугольные, ромбические или многоугольные грани. Материалом геодезического купола является алюминий.
6. Волнистый и складчатые купола имеют поверхность, состоящую из оболочек двоякой кривизны и складок, сходящихся к полюсу купола. Такие купола применяют в покрытиях до 80 м. Их выполняют монолитными и сборно-монолитными из сопряженных сегментов оболочек-волн одинарной или двоякой кривизны. Несмотря на больший, чем у гладких куполов, расход материала, волнистая (складчатая) конструкция обладает рядом преимуществ: благодаря открытым наружным торцам волн обеспечивается полноценное верхнебоковое естественное освещение внутренних пространств и устройство входов, а выразительная объемная форма конструкции обогащает композицию фасадов и интерьера здания. Недостатком является сложность устройства утепления кровли.
Висячие конструкции наряду с покрытиями из тонкостенных жестких оболочек являются наиболее экономичными конструкциями большепролетных покрытий. Они изобретены и впервые применены в 1896 году В.Г. Шуховым, но широкое внедрение в строительство получили только со второй половины XX века, когда уровень развития строительной техники существенно возрос. Такие покрытия применяют преимущественно для пролетов свыше 60 м в спортивных, зрелищно-спортивных зданиях, выставочных павильонах, аэровокзалах. Висячие конструкции выполняют из металла – тросов, прутков, тонколистовых мембран, сеток, металлических лент (рис. 39). Принципиальными особенностями, определяющими специфику висячих систем, являются их высокая деформативность и аэродинамическая неустойчивость.
Мембранные покрытия получили развитие в связи с появлением специализированных заводов металлических конструкций, позволяющих изготовлять тонколистовые (2–5 мм) рулонные заготовки шириной до 10 м и длиной на пролет. На строительстве рулоны раскатывают по специальной «постели» из направляющих. В качестве направляющих используют стальные полосы, балки или висячие фермы. Элементы постели обеспечивают одновременно стабилизацию покрытия. Продольные края «лепестков» соединяют друг с другом шовной сваркой или высокопрочными болтами (рис. 45
Стрела провиса мембран составляет 1/15–1/20 пролета, форма поверхности покрытия на круглом плане – параболоид вращения, на эллиптическом – эллиптический параболоид. Преимуществом мембранных покрытий перед покрытиями из стержней и тросов является совмещение мембранной оболочкой несущих и ограждающих функций.