Организация системы шин L, S, X и M в компьютере РС/АТ

Следует отметить, что описанная выше система из одной, разбитой на три секции, шины, использовалась лишь в древних ЭВМ класса IBM PC XT. Имея название “Общая шина”, она и впрямь пронизывала весь компьютер, позволяя соединить в каждый момент времени процессор с одним из приборов памяти либо одним из контроллеров периферийных устройств. На самом деле в нашем компьютере имеется не одна, а несколько шин (см.рис.2.2). Основных шин четыре, и обозначаются они как L-шина, S-шина, М-шина и X-шина. Нами только что рассматривалась L-шина (или локальная шина), линии адреса и данных которой связаны непосредственно с микропроцессором. Можно ввести понятие удаленности шины от процессора, считая, что чем больше буферов отделяют шину, тем она более удалена от процессора. Тогда L-шина может считаться ближайшей к процессору.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

Рис 2.2. Шинная организация IBM PC AT

Основной шиной, связывающей компьютер в единое целое, является S-шина, или системная шина, к которой, кроме того, подключаются адаптеры периферийных устройств, не входящих в состав системного ядра. Именно она выведена на 8 специальных разъемов-слотов. Эти слоты хорошо видны на системной плате компьютера: в них установлены платы периферийных адаптеров (дисплея, флоппи-диска, винчестера, мыши и т.д.).

При переходе с шины L на шину S сигналы процессора должны претерпеть определенную трансформацию. В частности, максимальная нагрузочная способность линий микропроцессора не превышает одного TTL входа, так как максимальный выходной ток этих линий не должен превышать 1мА. Поэтому между линиями L - шины и S - шины должны располагаться буферные элементы, повышающие мощность выводов как минимум в сто раз. Кроме того, шина данных микропроцессора, как мы увидим в дальнейшем, не всегда должны соединяться с остальными частями ЭВМ. При выполнении так называемого внепроцессорного обмена микропроцессор вообще должен быть отключен от остальных схем компьютера.

Защелкивание (этот распространенный в среде инженеров - электронщиков термин обозначает сохранение информации в регистре) кода адреса необходимо по следующей причине. К тому моменту, когда на шинах данных появляется информация, подлежащая перемещению в микропроцессор или из него, должен уже быть подготовлен тракт передачи этой информации от источника к приемнику, проходящий через систему шин и образованный целым набором буферных усилителей и шинных формирователей. Как известно, переключение выводов микросхем из высокоимпедансного состояния в рабочее, а также переключение направления передачи информации требует определенного времени. Кроме того, время затрачивается на дешифрацию элементов, участвующих в данном обмене. Следовательно, адресная информация должна быть выставлена на шину заблаговременно - еще в конце машинного цикла, предшествующего циклу рассматриваемого обмена, и сохраняться в регистре. Кроме того, для максимально возможного увеличения скорости обмена адресная информация, необходимая для дешифрации периферийных микросхем, вообще фиксируется и участвует в подготовке обмена начиная примерно с середины предыдущего цикла. Этот вариант адреса, образующийся на линиях LA(17) - LA(23), и соответствующий адресу обмена в следующем цикле, меняется уже тогда, когда на остальных линиях адреса системной шины еще присутствует информация, соответствующая адресу обмена в текущем цикле.

Эволюция шинной архитектуры

Когда микропроцессор с рассмотренной шинной архитектурой выполняет, например, команду чтения из памяти, воздействие (адрес и сигналы управления) с локальной L шины попадает на системную S шину, а только затем на шину памяти M. После этого данные, считанные из памяти, опять-таки попадают на системную шину, а с нее - на локальную. Очевидно, что каждый перенос информации через тот или иной буферный элемент сопровождается определенной задержкой. И пусть одна задержка невелика (не более 10 наносекунд), но суммарно их набирается довольно много, что и определяет ту довольно низкую тактовую частоту, на которой работали первые IBM PC - 12, или даже 8 Мгц.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

Рис 2.3 Классическая архитектура IBM PC AT 286

Для устранения таких потерь в более поздних моделях IBM PC AT 286 основная оперативная память выделяется в особую подсистему и доступ к ней осуществляется не через системную шину, а параллельно с доступом к системной шине. Как правило, это связано с наличием интегрированного контроллера шины данных. Суммарная задержка передачи данных в этом случае сокращается примерно до 20 нс, а тактовая частота повышается до 25 МГц.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

Рис 2.4 Архитектура IBM PC AT 286 поздних моделей

Дальнейшее совершенствование систем в этом направлении привело к тому, что переход от шины данных LD локальной шины к шине MD шины памяти упростился до предела. Функцию контроллера шины данных в этом случае выполняет обычный шинный формирователь. На первый взгляд, в нем нет необходимости и можно было бы просто объединить шины LD и MD. Но по соображениям согласования электрических сигналов этого нельзя делать.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

Рис 2.5 Архитектура IBM PC AT 386 с конвертором системной шины

Дальнейшие возможности повышения производительности процессора связаны с поисками решений в области архитектуры РС АТ. Введение кэш- памяти позволило ослабить требования по времени доступа к основной оперативной памяти (кэш-память - это статическая память с малым временем доступа, которая не “видна” для программного обеспечения. Объем ее колеблется от 128Кбайт до 1 Мбайт). При этом на локальной шине, кроме микропроцессора и сопроцессора, появляется контроллер управления кэш- памятью. При объеме памяти 128 Кбайт вероятность того, что необходимая микропроцессору информация окажется в кэш-памяти, состовляет 95-98%. Эффективность кэш-памяти становится значительной на частотах выше 20 Мгц, так как в этом случае потери производительности из-за задержек доступа к оперативной памяти очень чувствительны.

Последующие архитектурные изменения связаны с переходом от процессоров, имеющих 32 разрядные шины данных (i80386 и i80486), к процессорам, имеющим 64 разрядные шины, а именно к процессорам Pentium, Pentium Pro и Pentium II.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

Рис 2.6 Архитектура IBM PC AT с кеш-памятью

Передача информации в МПС

При организации последовательного обмена ключевыми могут считаться две проблемы:

1) синхронизацию битов передатчика и приемника;

2) фиксацию начала сеанса передачи.

В МПС существует три способа передачи информации:

· асинхронный;

· синхронный;

· смешанный.

Асинхронный способ характеризуется тем, что сигналы передаются с произвольными промежутками времени.

Синхронный способ характеризуется тем, что сигналы передаются строго периодично во времени.

Смешанный способ характеризуется тем, что байты передаются асинхронно, а биты внутри байтов синхронно.

Асинхронный способ

Асинхронный способ обеспечивает передачу информации по единственной линии. Для надежной синхронизации обмена в асинхронном режиме

1) передатчик и приемник настраивают на работу с одинаковой частотой;

2) передатчик формирует стартовый и стоповый биты, отмечающие начало и конец посылки;

3) передача ведется короткими посылками (5..9 бит), а частоты передачи выбираются сравнительно низкими.

Асинхронный способ по методу регистрации сигналов делится на:

· стробируемый;

· «запрос-ответ».

Метод стробирования

Строб – дополнительный сигнал, является подтверждением действительности других сигналов.

Стробирование может осуществляться по фронту или по уровню.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

Рис. 3.1 Виды стробов.

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

рис 3.2 Стробируемый метод

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

рис 3.3 Стробируемый метод

Стробирование по фронту.

Достоинства:

· легкая аппаратная реализация;

· высокое быстродействие.

Недостатки:

· нельзя использовать строб сигнал как сигнал синхронизации;

· момент переключения трудно зафиксировать программно.

Стробирование по уровню.

Достоинства:

· легкая аппаратная реализация;

· легкая программная реализация;

· легкая организация приема от нескольких источников.

Недостатки:

· нельзя использовать строб сигнал как сигнал синхронизации;

· меньшее быстродействие.

Метод «запрос-ответ»

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

рис 3.4 Метод «запрос-ответ»

t1 – передатчик выставляет данные (предварительно проверив отсутствие строба-ответа)

t2 – передатчик с некоторой задержкой выставляет сигнал строб-запрос

t3 – приемник, анализируя состояние линии строб-запрос, обнаруживает наличие определенного сигнала и в этот же момент осуществляет прием данных по линии.

t4 – передатчик, сканируя линию строб-ответ, обнаруживает, что он активен и сбрасывает строб-запрос

t5 – приемник, сканируя линию строб-запрос, обнаруживает, что строб запрос стал неактивен и сбрасывает строб-ответ

t6 – тоже самое, что и t1

Достоинства:

· позволяет сопрягать аппаратуру существенно отличающуюся быстродействием;

· легко организуется программным путем.

Недостатки:

· нельзя использовать строб сигнал как сигнал синхронизации;

· меньшее быстродействие.

Синхронный способ

В синхронном способе передачи информации выделяют изохронный метод.

Синхронизация бывает:

· внутренняя

· внешняя

Изохронный метод

В этом методе передачи информации возможна потеря данных. Здесь сам приемник определяет какие данные принимать, а какие нет (например для звуковой информации).

Внешняя синхронизация

Сигналы синхронизации поступают вместе с данными. В этом случае форма сигналов может быть неправильной. Поэтому внешняя синхронизация используется только при передаче на небольшие расстояния, т.е. внутри платы.

Внутренняя синхронизация

Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

рис 3.5 Внутренняя синхронизация

SYN – специальный сигнал пересылаемый один раз и запускающий тактовый генератор.

Достоинства:

· достаточно двух линий: сигнал и земля;

· высокая частота;

· высокая надежность связи;

· длина пакета определяется взаимной синхронностью передатчики и приемника.

 
  Организация системы шин L, S, X и M в компьютере РС/АТ - student2.ru

При синхронном методе передатчик генерирует две последовательности - информационную TxD и синхроимпульсы CLK, которые передаются на приемник по разным линиям (Рис. 3.6).

Рис. 3.6. Последовательный синхронный обмен с внешней синхронизацией

Синхроимпульсы обеспечивают синхронизацию передаваемых бит, а начало передачи отмечается по-разному.

При организации внешней синхронизации сигнал начала передачи BD генерируется передатчиком и передается на приемник по специальной линии (Рис. 3.6).

В системах с внутренней синхронизацией отсутствует линия BD, а на линию данных генерируются специальные коды длиной 1-2 байта - “символы синхронизации”. Для каждого приемника предварительно определяются конкретные синхросимволы, таким образом можно осуществлять адресацию конкретного абонента из нескольких, работающих на одной линии. Каждый приемник постоянно принимает биты с RxD, формирует символы и сравнивает с собственными синхросимволами. При совпадении синхросимволов последующие биты поступают в канал данных приемника.

Наши рекомендации