Кристаллы являются диэлектриками или проводниками (металлами) в зависимости от того, как заполнены их энергетические зоны
Металлы отличаются от диэлектриков тем, что в них некоторые зоны заполнены не полностью (рис.1.3,в). В диэлектриках все зоны либо заполненные, либо пустые (рис.1.3,г).
Полупроводники - это частный случай диэлектриков: при 0 К у них тоже все зоны либо заполненные, либо пустые, но, в отличие от диэлектриков, в полупроводниках уже при комнатной температуре некоторые электроны за счет теплового движения частично освобождают заполненные зоны, переходя в пустые.
Если в твердом теле, помещенном в электрическое поле, возник электрический ток, то средняя кинетическая энергия осуществляющих ток электронов должна повышаться, поскольку направленное движение электронов накладывается на их беспорядочное тепловое движение. Ситуация похожа на направленное (под влиянием ветра) движение роя мошек, продолжающих беспорядочно кружиться внутри роя. Повышение энергии возможно лишь в частично заполненных зонах, где есть свободные уровни. Таким образом, в металле электроны в не полностью заполненных зонах могут, не покидая свою зону, осуществлять направленный перенос заряда.
Электроны в полностью заполненной зоне не могут повышать свою энергию, так как это означает подняться на следующую ступеньку энергетической лестницы, а в валентной зоне они все уже заняты другими электронами. Для того чтобы «перепрыгнуть» через запрещенную зону в следующую, свободную зону, нужна достаточно большая энергия. Поэтому диэлектрики ток не проводят.
Рис. 1.3. Энергетические спектры:
а - отдельного атома; б - кристалла (общий случай) - электроны могут иметь энергию только на уровнях внутри разрешенных зон; в - металла: одна из разрешенных зон заполнена электронами не полностью; г - диэлектрика: все разрешенные зоны либо заполнены полностью, либо пустые; д - полупроводника: последняя полностью заполненная зона называется валентной, следующая разрешенная зона - зоной проводимости
В полупроводниках последняя по величине энергий зона, ступеньки которой при 0 К все заполнены электронами, называется валентной (рис. 1.3, д). Выше нее располагается запрещенная зона. Следующая разрешенная зона называется зоной проводимости, и при 0 К в ней электронов нет. Особенностью полупроводников по сравнению с диэлектриками является сравнительно узкая запрещенная зона. За счет энергии теплового движения часть электронов может ее преодолеть и оказаться в зоне проводимости. Ситуация похожа на испарение жидкости, когда самые быстрые молекулы могут покинуть ее поверхность и перейти в воздух Электроны полупроводника в зоне проводимости могут направленно двигаться в электрическом поле, создавая ток.
При переходе электрона в зону проводимости в валентной зоне остается вакантное место, которое называют дыркой. Отсутствие отрицательного заряда можно рассматривать как положительный заряд, поэтому дырки двигаются в электрическом поле в другую сторону по сравнению с электронами. Фактически э означает, что наличие дырки (вакантного места на энергетической ступеньке) позволяет другому электрону из валентной зоны перескочить на эту ступеньку участвовать в направленном переносе заряда (электрическом токе).
У разных полупроводников ширина запрещенной зоны разная, контакт таких полупроводников изображён на рисунке 1.2. Контакт двух различных полупроводников называют гетеропереходом. Гетероструктурой называют полупроводниковую структуру с несколькими гетеропереходами. На рисунке 1.2 изображена двойная гетероструктура.
Тонкий слой полупроводника 2 с узкой запрещенной зоной помещен между двумя полупроводниками 1 с широкой запрещенной зоной. Электрон в полупроводнике 2 может свободно двигаться в плоскости ХУ если его энергия Е соответствует зоне проводимости. Однако его энергии может оказаться недостаточно для преодоления потенциальных барьеров слева и справа: в полупроводниках 1 это будет для него запрещенная зона Таким образом, движение электронов в полупроводнике 2 по оси Z ограничено потенциальными барьерами в то время как в перпендикулярной плоскости ХУ они движутся свободно, образуя так называемый двумерный электронный газ. Такую структуру - с ограничением движения в одном из трех направлений - называют квантовой ямой (quantum well). Можно ограничить движение электронов еще в одном измерении и получить квантовые нити (квантовые проволоки). Носители заряда, электроны и дырки, смогут перемещаться только вдоль квантовой нити. Продолжая эту идею и ограничив движение носителей «со всех сторон», мы получим квантовую точку (quantum dot). Как выразился один из известных исследователей в этой области, то, что является трехмерной квантовой ямой для электрона, представляет собой квантовую точку (наноразмерное скопление атомов) для человека.
В классический механике энергия частицы в потенциальной яме может принимать непрерывный ряд значений. Теннисный мяч, упавший в реальную яму на земле, может прыгать в ней на любую высоту. Для частицы в трехмерной квантовой яме, подчиняющейся законам квантовой механики, существует дискретный набор уровней энергии, как для электрона в атоме. Поэтому квантовые точки называют искусственными i атомами. Число уровней энергии зависит от ширины потенциальной ямы, ее глубины и массы частицы.
Благодаря туннельному эффекту находящийся в потенциальной яме; электрон можно обнаружить и за ее пределами, хотя его энергия меньше «глубины» ямы.
Туннельный эффект широко используется в современной наноэлектронике. За разработку метода туннельной спектроскопии Нобелевская премия по физике 1973 г. была присуждена Л. Эсаки, А. Джайверу и П. Д. Джозефсону.