More fuel-efficient driving

It is generally accepted that driving style is the single greatest influence on fuel efficiency. Driver training programmes have been shown to improve fuel efficiency by 8–10 per cent. To date over 7,000 drivers have received training under the UK government’s Safe and Fuel Efficient Driving (SAFED) programme, with average ‘on-the-day’ improvements in fuel efficiency of just over 10 per cent recorded (DfT, 2009). If this sample of drivers were representative of the HGV driver population as a whole and if they maintained the improvement in fuel efficient driving observed during the training session, admittedly two large ‘ifs’, improved driver training could cut total fuel consumption by trucks in the UK by 880 million litres per annum, and CO2 emissions by 2.3 million tonnes.

Truck simulators are also being used to provide training in safe and fuel-efficient driving techniques. Approximately 550 drivers have undergone training on the English truck simulator, while around 1,000 have been assessed and trained on two truck simulators in Scotland. On average, between the first (pre-training) and second (post-training) run on the Scottish simulators drivers have achieved an average increase in fuel efficiency of 13 per cent.

To derive longer-term benefit from training in so-called ‘eco-driving’, companies have to maintain awareness of the fuel efficiency issue and incentivize drivers to continue using their skills in fuel-efficient driving. Many companies now offer financial incentives in the form of prizes or bonuses. For such schemes to operate effectively, however, the collection and analysis of fuel data must be seen to be fair and consistent. This can be a complex exercise where drivers regularly switch vehicles and delivery runs (McKinnon, Stirling and Kirkhope, 1993).

It is not only when driving the vehicle that drivers can have a major impact on fuel consumption. By leaving the engine idling unnecessarily, failing to check tyre pressures and not reporting engine problems or oil leaks, drivers waste a lot of fuel. It is necessary therefore to get drivers to adhere to a full set of fuel economy rules.

Fleet management

Once the right vehicles are purchased and adequately maintained, the fleet manager must ensure that they are deployed in a way that maximizes their operational efficiency. This includes assigning the ‘right vehicles to the right jobs’. Available survey evidence suggests that this basic rule of good fleet management is often broken, at the expense of higher fuel consumption by lorries that are bigger or heavier than they need to be for the load they are carrying. Efforts to match the capacity of the vehicle to the size weight of the load run counter to the common practice of standardizing vehicle weights and dimensions within a fleet. There is scope, however, for improving this match, particularly with the use of fleet management software.

Fleet management can also be reinforced by the appointment of a ‘fuel champion’ whose job it is to analyse the pattern of fuel consumption, promote fuel saving initiatives and generally instil a fuel-saving culture in the workforce (FTA, 1993). With or without a ‘fuel champion’, management needs systems in place to monitor fuel consumption and analyse variations in fuel efficiency at a disaggregated level by driver, vehicle, depot and contract. In the absence of such data, it is very difficult to devise an effective fuel management programme. Such a programme will require meaningful and realistic KPIs and targets to give the staff clear goals. Establishing these targets can be difficult given the wide variety of factors that exert an influence on fuel efficiency. Research at the University of Hudders field (Coyle, 1998), for example, has revealed how the average fuel efficiency of a fleet can be around 10 per cent lower in the winter than in the summer, mainly because more energy is used to heat the vehicle.

Conclusions

There are numerous ways in which the fuel efficiency of road freight operations can be improved. Those who manufacture, maintain, operate and drive trucks all have a key role to play in minimizing the amount of fuel consumed in moving freight by road. In recent years, a general view has emerged that opportunities for further technical improvements to the energy efficiency of new vehicles are limited and that future gains will come mainly from their operation and maintenance. As discussed in Chapter 7, this view probably underestimates the potential for future technological advances in engine and vehicle design (Baker et al, 2009).

Benchmarking surveys also reveal that wider dissemination of current best practice in fuel management by truck operators could substantially reduce the energy intensity of road freight transport. Rising oil prices, environmental taxes, carbon trading, government campaigns and intensifying competition in the road freight market are all likely to promote this dissemination over the next 10–20 years.

Наши рекомендации