Обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности

ЭЛЕМЕНТЫ ФОТОМЕТРИИ. СВЕТОВЫЕ ВЕЛИЧИНЫ.

ЗАКОН ОСВЕЩЕННОСТИ

Цель работы:Изучить фотометрические световые величины, законы освещенности. Освоить работу с люксметром. Экспериментально и расчетным путем определить зависимость освещенности поверхности от расстояния до источника света.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

СВЕТОВЫЕ ФОТОМЕТРИЧЕСКИЕ ВЕЛИЧИНЫ

Раздел оптики, занимающийся рассмотрением световых и энергетических характеристик излучения в процессах его испускания, распространения и взаимодействия с веществом, называется фотометрией.

Для количественного описания самого излучения, источника излучения и освещенной поверхности применяются энергетические и световые фотометрические величины.

Световые величины используются в видимой области (l = 0,38 … 0,76 мкм) оптического излучения, а энергетические – в ультрафиолетовой и инфракрасной областях.

Рассмотрим световые фотометрические величины и их единицы.

Световое излучение характеризуется световым потоком Ф и силой света I.

Световой поток dФ излучения определяют по формуле

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru , (1)

где к (l) – световая активность человеческого глаза, лм/Вт,

Фе – поток излучения, равный отношению энергии, переносимой излучением в данном телесном угле, ко времени переноса, то есть мощность излучения в заданном телесном угле, Вт.

Световой поток Ф измеряется в люменах (лм, от лат. lumen - свет).

Формула (1) имеет смысл для видимого диапазона оптического излучения. Вне этого диапазона к (l) = 0 и Ф = 0. Внутри видимого диапазона к(l) = f(l). Максимальное значение кmax = 680 лм/Вт соответствует в дневное время зеленому цвету (l = 0,55 мкм).

Силой света I называют световой поток, приходящийся на единицу телесного угла W

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru . (2)

Единицей силы света является – 1 кандела (от лат. свеча), 1 кд = 1 лм/ср (ср – стерадиан – единица телесного угла).

В общем случае сила света I зависит от направления. Если сила света источника во всех направлениях одинаковая, то такой источник света называется изотропным. Для изотропного источника, излучающего во все стороны

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru . (3)

Поверхность, облучаемая потоком света, характеризуется величиной, называемой освещенностью.

Освещенность Е поверхности равна отношению светового потока dФ к площади dS освещаемой поверхности

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru . (4)

Единицей Е является 1 лк – один люкс (от лат., lux- свет).

По существующим нормативам место для чтения должно иметь Е = 75 … 100 лк.

Для связи светового потока Ф источника света с потребляемой источником мощностью Р вводится величина, называемая световой отдачей.

Световая отдача

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru , лм/Вт. (5)

Лампы накаливания общего назначения имеют кот = 8 … 20 лм/Вт. Например, аргоновая лампа накаливания напряжением 220 В и мощностью 100 Вт дает световой поток в 1350 лм и, следовательно, кот = 13,5 лм/Вт. Люминесцентные лампы имеют кот до 90 лм/Вт, металлогалогенные – 130 лм/Вт.

ЗАКОНЫ ОСВЕЩЕННОСТИ

Как следует из опыта, освещенность поверхности зависит от силы света источника, расстояния между источником света и освещаемой поверхностью и от положения освещаемой поверхности относительно падающих лучей.

1-й закон освещенности: Освещенность поверхности, на которую перпендикулярно падает свет, пропорциональна силе света I источника и


обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru . (6)

2-ой закон освещенности: Освещенность поверхности, создаваемая наклонными параллельными лучами, прямо пропорциональна косинусу угла падения лучей

обратно пропорциональна квадрату расстояния R от источника света до освещаемой поверхности - student2.ru . (7)

ПРАКТИЧЕСКАЯ ЧАСТЬ

С помощью люксметра измерить освещенность Еизм на различных расстояниях R от лампы накаливания (5 точек). Построить график Еизм = f(R).

Для этих же точек рассчитать значения освещенностей Еизм , используя формулы (6), (3), (5). На том же графике нанести расчетную зависимость Ерасч = f(R).

Рассчитать максимальную относительную разность расчетных и измеренных значений Е. Указать возможные причины расхождения результатов.

Отчет о лабораторной работе должен содержать краткую теоретическую часть, схему эксперимента, таблицу измерений и рассчитанных значений Е, графики Еизм = f(R) и Ерасч = f(R), выводы.

Наши рекомендации