Отличия локальных сетей от глобальных

· Протяженность, качество и способ прокладки линий связи. Класс локальных вычислительных сетей по определению отличается от класса глобальных сетей небольшим расстоянием между узлами сети. Это в принципе делает возможным использование в локальных сетях качественных линий связи: коаксиального кабеля, витой пары, оптоволоконного кабеля, которые не всегда доступны (из-за экономических ограничений) на больших расстояниях, свойственных глобальным сетям, В глобальных сетях часто применяются уже существующие линии связи (телеграфные или телефонные), а в локальных сетях они прокладываются заново.

· Сложность методов передачи и оборудования. В условиях низкой надежности физических каналов в глобальных сетях требуются более сложные, чем в локальных сетях, методы передачи данных и соответствующее оборудование. Качественные линии связи в локальных сетях позволили упростить процедуры передачи данных за счет применения немодулированных сигналов и отказа от обязательного подтверждения получения пакета.

· Скорость обмена данными. Одним из главных отличий локальных сетей от глобальных является наличие высокоскоростных каналов обмена данными между компьютерами, скорость которых (10,16и100 Мбит/с) сравнима со скоростями работы устройств и узлов компьютера. За счет этого у пользователя локальной сети, подключенного к удаленному разделяемому ресурсу, складывается впечатление, что он пользуется этим диском, как «своим». Для глобальных сетей типичны гораздо более низкие скорости передачи данных - 2400,9600,28800,33600 бит/с, 56 и 64 Кбит/с и только на магистральных каналах - до 2 Мбит/с.

· Разнообразие услуг. Локальные сети предоставляют, как правило, широкий набор услуг - это различные виды услуг файловой службы, услуги печати, услуги службы передачи факсимильных сообщений, услуги баз данных, электронная почта и другие, в то время как глобальные сети в основном предоставляют почтовые услуги и иногда файловые услуги с ограниченными возможностями - передачу файлов из публичных архивов удаленных серверов без предварительного просмотра их содержания.

· Оперативность выполнения запросов. Время прохождения пакета через локальную сеть обычно составляет несколько миллисекунд, время же его передачи через глобальную сеть может достигать нескольких секунд. Низкая скорость передачи данных в глобальных сетях затрудняет реализацию служб для режима on-line, который является обычным для локальных сетей.

· Разделение каналов. В локальных сетях каналы связи используются, как правило, совместно сразу несколькими узлами сети, а в глобальных сетях - индивидуально.

· Использование метода коммутации пакетов. Важной особенностью локальных сетей является неравномерное распределение нагрузки. Отношение пиковой нагрузки к средней может составлять 100:1 и даже выше. Такой трафик обычно называют пульсирующим. Из-за этой особенности трафика в локальных сетях для связи узлов применяется метод коммутации пакетов, который для пульсирующего трафика оказывается гораздо более эффективным, чем традиционный для глобальных сетей метод коммутации каналов. Эффективность метода коммутации пакетов состоит в том, что сеть в целом передает в единицу времени больше данных своих абонентов. В глобальных сетях метод коммутации пакетов также используется, но наряду с ним часто применяется и метод коммутации каналов, а также некоммутируемые каналы - как унаследованные технологии некомпьютерных сетей.

· Масштабируемость. «Классические» локальные сети обладают плохой масштабируемостью из-за жесткости базовых топологий, определяющих способ подключения станций и длину линии. При использовании многих базовых топологий характеристики сети резко ухудшаются при достижении определенного предела по количеству узлов или протяженности линий связи. Глобальным же сетям присуща хорошая масштабируемость, так как они изначально разрабатывались в расчете на работу с произвольными топологиями.

18. Корпоративные сети - компьютерные сети, включающие локальные сети удаленных филиалов и отделений одной организации и предприятия. В международной терминологии такие сети называют EnterpriseNetwork - сети масштаба предприятия. В корпоративной сети удаленные локальные сети могут быть расположены в одном городе, на территории страны или разных стран. Крупные сети могут иметь большое число компьютеров пользователей, серверов и информационных сервисов и других разделяемых ресурсов. Задачей любой корпоративной сети является обеспечение прозрачного для ее пользователей использования ресурсов с требуемыми качественными показателями, такими как время доступа, надежность, обеспечение несанкционированного доступа к информационным ресурсам и др.

Организация каналов передачи данных между локальными сетями на удаленных территориях могут осуществляться на основе : 1) выделенных (арендованных) каналов связи. 2) использования ресурсов глобальных сетей.

Создание корпоративной сетей на выделенных каналах является наиболее предпочтительным. В этом случае эксплуатация и все параметры сети находятся в руках ее владельца (в т.ч. возможность использования). При этом обеспечивается необходимая пропускная способность, использование протоколов засекречивания, т.е. полная независимость от сетевых операторов - поставщиков услуг. Такая сеть физически отделена от других сетей, что делает невозможным несанкционированный доступ к ее ресурсам. Однако при большом количестве удаленных локальных сетей стоимость создания и ее эксплуатация может оказаться весьма высокой.

В случае использования ресурсов существующих глобальных сетей стоимость создания и эксплуатация может оказаться значительно ниже. Подключение удаленной локальной сети через сеть Интернет без использования дополнительных средств организации логических каналов или средств организации "туннелей" является неэффективным, т.к. не гарантируется надежность, требуемое время доставки, не исключает возможность несанкционированного доступа. Дляорганизации "туннелей" необходимо использовать технологии виртуальных частных сетей (VPN - VirtualPrivateNetwork). Такое подключение аналогично использованию постоянных виртуальных каналов PVC (PermanentVirtualCircuit) в сетях с технологией Х.25, однако в связи с различиями технологий Интернет (TCP/IP) и Х.25, свойства таких сетей будут различны

Требования, предъявляемые к современным вычислительным сетям.

Среди основных показателей можно выделить следующие:

производительность; надежность и безопасность;

управляемость; расширяемость; прозрачность.

Производительность. Производительность вычислительной сети может быть оценена с разных позиций. С точки зрения пользователя, важным числовым показателем производительности сети является время реакции системы, особенно в той части, которая относится к работе сети. Время реакции - это время между моментом возникновения запроса и моментом получения ответа. Время реакции зависит от многих факторов, таких как используемая служба сети, степень загруженности сети или отдельных сегментов и др. Поэтому при оценке производительности работы сети определяется среднее время реакции.
Пропускная способность сети определяется количеством информации, переданной через сеть или ее сегмент в единицу времени. Пропускная способность сети характеризует, насколько быстро сеть может выполнить свою основную задачу передачи информации. Пропускная способность определяется в битах в секунду.

Надежность и безопасность. Для оценки надежности используется: коэффициент готовностиозначает частицу времени, в течение которого система может быть использована. Готовность может улучшить путем введения избыточности в структуру системы: ключевые элементы системы должны существовать в нескольких экземплярах, чтобы при отказе одного из них функционирования системы обеспечивали другие.
Другим аспектом общей надежности является безопасность.то есть способность системы защитить данные от несанкционированного доступа. Еще одною характеристикой надежности является отказостойкость. В сетях под отказоустойчивостью понимается способность системы спрятать от пользователя отказ отдельных ее элементов. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы, а не к полной остановке.

Управляемость. Управляемость сети имеет в виду возможность централизованно контролировать состояние основных элементов сети, обнаруживать и решать проблемы, которые возникают при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями являют собой систему, которая осуществляет наблюдение, контроль и управление каждым элементом сети, – от самых простых к самим сложным устройствам, при этом такая система рассматривает сеть как единое целое, а не как разрознен набор отдельных устройств.

Расширяемость. Означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, дополнений, служб), наращивания длины сегментов сети и замены существующей аппаратуры, более мощной.

Прозрачность вычислительной сети является ее характеристикой с точки зрения пользователя. Эта важная характеристика должна оцениваться с разных сторон. Прозрачность сети предполагает скрытие (невидимость) особенностей сети от конечного пользователя. Пользователь обращается к ресурсам сети как к обычным локальным ресурсам компьютера, на котором он работает.Вычислительная сеть объединяет компьютеры разных типов с разными операционными системами. Пользователю, у которого установлена, например, Windows, прозрачная сеть должна обеспечивать доступ к необходимым ему при работе ресурсам компьютеров, на которых установлена, например, UNIX. Другой важной стороной прозрачности сети является возможность распараллеливания работы, между разными элементами сети.

Линии связи

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Синонимом термина линия связи (line) является термин канал связи(channel).
Состав линии связи. Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В зависимости от среды передачи данных линии связи разделяются на следующие:
проводные (воздушные);
кабельные (медные и волоконно-оптические);
радиоканалы наземной и спутниковой связи.
Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.
Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели. Скрученная пара проводов называется витой парой. Витая пара существует в экранированном варианте (ShieldedTwistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (UnshieldedTwistedpair, UTP), когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (opticalfiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.
Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (AmplitudeModulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (FrequencyModulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется. В компьютерных сетях сегодня применяются практически все описанные типы физических средпередачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей.

Стандарты кабелей

Кабель - это достаточно сложное изделие, состоящее из проводников, слоев экрана и изоляции. Сегодня наиболее употребительными стандартами в мировой практике являются следующие:

Американский стандарт EIA/TIA-568A, который был разработан совместными усилиями нескольких организаций: ANSI, EIA/TIA и лабораторией UnderwritersLabs (UL). Стандарт EIA/TIA-568 разработан на основе предыдущей версии стандарта EIA/TIA-568 и дополнений к этому стандарту TSB-36 и TSB-40A). Международный стандарт ISO/IEC 11801. Европейский стандарт EN50173.

В стандартах кабелей оговаривается достаточно много характеристик, из которых наиболее важные перечислены ниже:

Затухание (Attenuation). Затухание измеряется в децибелах на метр для определенной частоты или диапазона частот сигнала.

Перекрестные наводки на ближнем конце (NearEndCrossTalk, NEXT). Измеряются в децибелах для определенной частоты сигнала.

Импеданс (волновое сопротивление) - это полное сопротивление в электрической цепи. Импеданс измеряется в Омах и является относительно постоянной величиной для кабельных систем (например, для коаксиальных кабелей, используемых в стандартах Ethernet, импеданс кабеля должен составлять 50 Ом). Для неэкранированной витой пары наиболее часто используемые значения импеданса - 100 и 120 Ом. В области высоких частот (100-200 МГц) импеданс зависит от частоты.

Активное сопротивление - это сопротивление постоянному току в электрической цепи. В отличие от импеданса активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля.

Емкость - это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле, разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше. Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.

Уровень внешнего электромагнитного излучения или электрический шум. Электрический шум - это нежелательное переменное напряжение в проводнике. Электрический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-, средне- и высокочастотный. Источниками фонового электрического шума в диапазоне до 150 кГц являются линии электропередачи, телефоны и лампы дневного света; в диапазоне от 150 кГц до 20 МГц - компьютеры, принтеры, ксероксы; в диапазоне от 20 МГц до 1 ГГц - телевизионные и радиопередатчики, микроволновые печи. Основными источниками импульсного электрического шума являются моторы, переключатели и сварочные агрегаты. Электрический шум измеряется в милливольтах.

Диаметр или площадь сечения проводника. Для медных проводников достаточно употребительной является американская система AWG, которая вводит некоторые условные типы проводников, например 22 AWG, 24 AWG, 26 AWG. Чем больше номер типа проводника, тем меньше его диаметр. В вычислительных сетях наиболее употребительными являются типы проводников, приведенные выше в качестве примеров. В европейских и международных стандартах диаметр проводника указывается в миллиметрах. Естественно, приведенный перечень характеристик далеко не полон, причем в нем представлены только электромагнитные характеристики и его нужно дополнить механическими и конструктивными характеристиками, определяющими тип изоляции, конструкцию разъема и т. п. Помимо универсальных характеристик, таких, например, как затухание, которые применимы для всех типов кабелей, существуют характеристики, которые применимы только к определенному типу кабеля. Например, параметр шаг скрутки проводов используется только для характеристики витой пары, а параметр NEXT применим только к многопарным кабелям на основе витой пары.

Основное внимание в современных стандартах уделяется кабелям на основе витой пары и волоконно-оптическим кабелям.


Наши рекомендации