Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской

Содержание

Часть 1

1. Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской……………………….….4

2. Общие сведения о металлорежущих станках Разновидности станочного оборудования…………………………………………………………………….… 6

3. Классификация металлорежущих станков ………………………………...8

4. Общие правила работы на металлорежущих станках……………………10

5. Обработка на металлорежущих станках……………………………………11

6. Токарная обработка…………………………………………………………..12

7. Инструментальные материалы………………………………………………14

8. Методы и средства контроля обработанной поверхности…………………17

9. Фрезерование…………………………………………………………………18

10. Строгание…………………………………………………………………….20

11. Шлифование…………………………………………………………………21

12. Эскиз детали – спец.валик………………………………………………….24

13. Операционная карта токарной обработки спец.валика……………………25

Часть 2

1. Место прохождения практики и его описание…………………………………29

2. Охрана труда и техника безопасности……………………………………….....30

3. Электро-сварочные работы……………………………………………………...36

3.1 Виды сварки……………………………………………………………….....36

3.2 Устройство сварочного оборудования……………………………………..40

3.3 Изготовление швов……………………………………………………….....41

3.4 Правка, резка и гибка металла……………………………………………..43

3.5 Дефекты сварки…………………………………………………………......47

3.6 Паяние баков, радиаторов охлаждения и трубок…………………………50

3.7 Типы электродов……………………………………………………………52

4. Кузнечные работы……………………………………………………………….52

4.1 Виды работ…………………………………………………………………..52

4.2 Устройство оборудования, инструмент, приспособления кузнечного отделения……………………………………………………………………………...55

4.3 Технологический процесс ковки и техника безопасности……………….57

5. Мероприятия по технике безопасности при проведении кузнечно-сварочных работ……………………………………………………………………………...62

6. Инструмент, оборудование, оснастка, материалы для работ………………...65

6.1 Оборудование рабочего места……………………………………………..65

6.2 Правила и приемы работ…………………………………………………...71

6.3 Технологическая последовательность выполнения операций при сварочных работах. …………………………………………………………………….73

7. Оборудование термического отделения……………………………………….76

7.1 Значение термической обработки в общем комплексе работ по ремонту автомобилей……………………………………………………………………..76

7.2 Технологические процессы термической обработки и правила безопасности………………………………………………………………………………..77

8. Термообработка инструмента, втулок полуосей легковых автомобилей…...81

9. Оснастка, гибка, пробивка, прошивка металла при изготовлении инструмента, приспособлений и изделий……………………………………………………..82

10. Подготовка кромок к сварке. Оборудование рабочего места. ………….86

11. Значение сварки в ремонте автомобилей и техника безопасности при его выполнении……………………………………………………………………...90

12. Выполнение сварочных работ электросварки и газосварки при изготовлении деталей………………………………………………………………………93

Часть I

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской

Работая на металлорежущих станках, необходимо соблюдать определенные правила техники безопасности.

Перед началом работы:

1) Привести в порядок свою одежду: застегнуть пуговицы, завязать пояски, одеть головной убор.

2) Привести в порядок рабочее место, подготовить все необходимое, убрать лишнее.

3) Проверить состояние станка: исправность рукояток управления и переключения станка.

Во время работы:

1) Надежно закреплять приспособления инструмента и заготовки.

2) Закреплять и снимать заготовку, измерять ее и очищать от стружки только после остановки станка.

3) Не тормозить патрон руками.

4) Обрабатывая металл, при образовании стружки надлома пользоваться защитными очками.

5) Не ремонтировать самостоятельно электрооборудование станка.

6) Убирать стружку только щеткой.

7) Не наклоняться к станку.

8) Временно прекращая работу, останавливать станок выключением электродвигателя.

После окончания работы:

1)Выключить электродвигатель.

2)Привести в порядок рабочее место.

Токарная обработка

Токарная обработка — один из возможных способов обработки изделий путем срезания с заготовки лишнего слоя металла до получения детали требуемой формы, размеров и шероховатости поверхности. Она осуществляется на металлорежущих станках, называемых токарными.

На токарных станках обрабатываются детали типа тел вращения: валы, зубчатые колеса, шкивы, втулки, кольца, муфты, гайки и т.д.

Основными видами работ, выполняемых на токарных станках, являются: обработка цилиндрических, конических, фасонных, торцовых поверхностей, уступов; вытачивание канавок; отрезание частей заготовки; обработка отверстий сверлением, растачиванием, зенкерованием, развертыванием; нарезание резьбы; накатывание.

Инструменты, применяемые для выполнения этих процессов, называются режущими. При работе на токарных станках используются различные режущие инструменты: резцы, сверла, зенкеры, развертки, метчики, плашки, резьбонарезные головки и др.

Процесс резания подобен процессу расклинивания, а рабочая часть режущих инструментов — клину.

При действии усилия Р на резец его режущая кромка врезается в заготовку, а передняя поверхность, непрерывно сжимая лежащий впереди слой металла и преодолевая силы сцепления его частиц, отделяет их от основной массы в виде стружки. Слой металла, срезаемый при обработке, называется припуском.

Все способы обработки металлов, основанные на удалении припуска и превращении его в стружку, определяются понятием резание металла. Для успешной работы необходимо, чтобы процесс резания протекал непрерывно и быстро. Форма обрабатываемой детали обеспечивается, с одной стороны, относительным движением заготовки и инструмента, с другой, — геометрией инструмента.

Процесс резания возможен при наличии основных движений: главного движения — вращения заготовки и поступательного движения резца, называемого движением подачи, которое может совершаться вдоль или поперек изделия, а также под постоянным или изменяющимся углом к оси вращения изделия.

Вращение заготовки называется главным движением, так как оно выполняется с большей скоростью. На обрабатываемой заготовке выделяются следующие поверхности; обрабатываемая, обработанная и поверхность резания. При срезании припуска образуется элемент, называемый стружкой.

Выделяются следующие виды стружки:

- элементная стружка (стружка скалывания) образуется при обработке твердых и маловязких материалов с низкой скоростью резания (например, при обработке твердых сталей). Отдельные элементы такой стружки слабо связаны между собой или совсем не связаны;

- ступенчатая стружка образуется при обработке стали средней твердости, алюминия и его сплавов со средней скоростью резания. Она представляет собой ленту — гладкую со стороны резца и зазубренную с внутренней стороны;

- слитая стружка образуется при обработке мягкой стали«меди, свинца, олова и некоторых пластмасс при высокой скорости резания. Эта стружка имеет вид спирали или длинной (часто путаной) ленты;

- стружка надлома образуется при резании малопластичных материалов (чугуна, бронзы) и состоит из отдельных кусочков.

Инструментальные материалы

Режущие инструменты изготовляют целиком или частично из инструментальных сталей и твердых сплавов.

Инструментальные стали разделяют на углеродистые, легированные и быстрорежущие.

Углеродистые инструментальные стали применяют для изготовления инструмента, работающего при малых скоростях резания. Из углеродистой стали марок У9 и У10А изготовляют ножи, ножницы, пилы, из У11, У11А, У12 — слесарные метчики, напильники и др. Буква У в марке стали обозначает углеродистая, цифра —содержание в стали углерода в десятых долях процента, буква А — марка углеродистой стали высококачественная, так как содержит серы и фосфора не более 0,03% каждого элемента.

Легированные инструментальные стали бывают хромистые— марки X, хромистокремнистые — 9ХС, вольфрамовые — В1 и хромовольфрамомарганцовистые — ХВГ и других марок.

Из стали марки X изготовляют метчики, плашки, из стали 9ХС — сверла, развертки, метчики и плашки. Сталь В1 рекомендуется для изготовления мелких сверл, метчиков, разверток, сталь ХВГ — для изготовления длинных метчиков и разверток.

Быстрорежущие (высоколегированные) стали применяют для изготовления различных инструментов, но чаще сверл, зенкеров, метчиков.

Изготовленные из быстрорежущей стали инструменты могут работать при более высоких скоростях резания, чем инструменты из углеродистой и легированной инструментальных сталей. Важнейшими компонентами быстрорежущих сталей являются вольфрам, хром и ванадий. Наиболее распространены быстрорежущие стали Р9 (~9% вольфрама) и Р6М5, которая приходит на смену Р18.

Все инструменты, изготовленные из инструментальных сталей, подвергают термической обработке.

Твердые сплавы делятся на металлокерамические и минералокерамические и выпускаются в виде пластинок разной формы. Инструменты, оснащенные пластинками из твердых сплавов, позволяют применять скорости резания значительно выше, чем инструменты из быстрорежущей стали.

Металлокерамические твердые сплавы разделяются на вольфрамовые, вольфрамотитановые, вольфрамотитанотанталовые.

Вольфрамовые сплавы группы ВК. состоят из карбидов вольфрама и титана. Применяются сплавы марок ВК2, ВК3М, ВК4, ВК6, ВК6М, ВК8, ВК8В. Буква В означает карбид вольфрама, К — кобальт, цифра — процентное содержание кобальта (остальное— карбид вольфрама). Буква М, приведенная в конце некоторых марок, означает, что сплав мелкозернистый, что повышает износостойкость инструмента, но снижает сопротивляемость ударам. Применяется для обработки чугуна, цветных металлов и их сплавов и неметаллических материалов.

Вольфрамотитановые сплавы группы ТК состоят из карбидов вольфрама, титана и кобальта. Применяются сплавы марок Т5К10, Т5К12В, Т14К8, Т15К6, Т30К4, Т15К12В. Буква Т и цифра за ней указывают процентное содержание карбида титана, буква К и цифра за ней — процентное содержание карбида кобальта, остальное в данном сплаве — карбид вольфрама. Применяются эти сплавы для обработки всех видов сталей.

Вольфрамотитанотанталовые сплавы группы ТТК состоят из карбидов вольфрама, титана, тантала и кобальта. Применяются сплавы марок ТТ7К12 и ТТ10К8Б, содержащие соответственно 7 и 10% карбидов титана и тантала, 12 и 8% кобальта, остальное — карбид вольфрама. Применяются эти сплавы для особо тяжелых условий обработки, когда применение других инструментальных материалов не эффективно.

При определенных условиях в качестве инструментального материала находит применение минералокерамический материал марки ЦМ-332, основной частью которого является окись алюминия. В состав этого материала не входят относительно редкие элементы: вольфрам, титан, кобальт и др. Преимуществом этого материала является возможность вести обработку при высоких скоростях резания, недостатком — повышенная хрупкость. Поэтому он применяется при получистовой и чистовой обработке чугуна, стали и цветных сплавов.

Для повышения прочности минералокерамики применяют плакирование — покрытие защитными пленками. На основе плакирования создана металлокерамическая композиция — керметы (керамика с металлической связкой), которая обеспечивает более высокую производительность при получистовой и чистовой обработке.

Фрезерование

Фрезерование-обработка резанием металлических и неметаллических материалов при котором режущий инструмент - фреза - имеет вращательное движение, а обрабатываемая заготовка - поступательное. Фрезерование применяется для обработки плоскостей, криволинейных поверхностей деталей, резьбовых поверхностей, зубьев зубчатых и червячных колес и т.п. Фрезерование осуществляется на фрезерных станках.

Фрезерование в металлообработке, процесс резания металлов и др. твёрдых материалов фрезой. Ф. применяется для обработки плоских и фасонных поверхностей (в т. ч. резьбовых поверхностей, зубчатых и червячных колёс) и осуществляется на фрезерных станках. Главное движение при Ф. — вращение инструмента, движение подачи — поступательное перемещение заготовки; скорость резания равна окружной скорости наиболее удалённых от оси фрезы точек её зубьев. При Ф. различают три вида подачи. Минутная подача S (в мм/мин); подача на один оборот фрезы S0 (в мм/об); подача на один зуб фрезы Sz (в мм/зуб) — относительное перемещение фрезы и заготовки при повороте фрезы на один угловой шаг e =(360/z) Sz характеризует интенсивность нагрузки зуба в процессе Ф. (стойкость фрезы) и вычисляется по формуле

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru

где z — число зубьев фрезы, n — частота вращения фрезы (об/мин). Глубина резания t (мм) при Ф. — толщина срезаемого слоя металла, измеренная перпендикулярно к обработанной поверхности. Ширина Ф. В (мм) — ширина обрабатываемой поверхности в направлении, параллельном оси фрезы. Существуют две возможные схемы Ф.: против подачи (встречное Ф.), когда в нижней точке контакта фрезы с обрабатываемой заготовкой векторы скорости резания и подачи противоположны, и по подаче (попутное Ф.), когда эти векторы совпадают, amax — наибольшая толщина срезаемого слоя металла; Y — угол контакта фрезы. При черновом Ф. обычно применяется вторая схема, при чистовом Ф. — первая. Площадь поперечного сечения слоя металла, срезаемого зубом фрезы, меняется в каждый момент времени резания и, следовательно, меняются и действующие на зуб силы. Равномерное Ф. может быть достигнуто при использовании фрез с винтовыми зубьями, работа которых характеризуется примерным постоянством площади поперечного сечения срезаемого слоя металла. Основное технологическое время при Ф.:

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru мин,

где L — общая длина прохода заготовки (в мм) относительно фрезы в направлении подачи, i — число проходов. Скорость резания, допускаемая при Ф., зависит от типа фрезы, материала и геометрических параметров её режущей части и др. элементов, режима резания, состояния поверхностного слоя заготовки и т.п. (см. Обработка металлов резанием). В процессе Ф. возникают силы сопротивления резанию. По окружной силе может быть определён крутящий момент на шпинделе фрезерного станка. Осевая сила действует на подшипник шпинделя станка, устройство для закрепления заготовки, а также детали и узлы механизма подачи. Радиальная сила действует на опоры шпинделя и оправку, в которой закрепляется фреза. Горизонтальная сила нагружает механизм подачи и устройство для закрепления заготовки.

Строгание

Обработка резанием строгальная обработка заключается в снятии верхней стружки с обрабатываемой поверхности. Весь процесс базируется на ряде возвратно-поступательных движений, которые совершает либо станок, либо сама заготовка. Все зависит от величины обрабатываемой площади и механических характеристик рабочего станка.

Для обработки используется несколько видов резцов, которые классифицируются:

-по назначению

-конфигурации стержня

-направленности головки

В последнее время широко применяются комбинированные резцы, режущая часть которых может быть выполнена из твердых сплавов или быстрорежущей стали.

Процесс резания металла посредством строгания

Обработка резанием строгальная обработка осуществляется на нескольких видах станков. Среди них строгально-долбежные, поперечно/продольно – строгальные, кромкострогальные и так далее. Главным параметров, при выборе станка на производстве выступает скорость и качество его работы, которое напрямую зависит от поступательных движений станка или резца. Для того, чтобы улучшить результат и добиться большей производительности, достаточно часто используется многорезцовый способ. Он заключается в установки нескольких широких резцов, оснащенных твердосплавной режущей частью.

В начале работы, важно все движения выполнять плавно, исключая всякую возможность резких ударов. Не менее продуктивно исключение холостого хода, которое так же способствует понижению результативности работы.

На станках используются исключительно прямые или изогнутые строгальные резцы. Прямые устанавливаются при малых вылетах, так как они не виброустойчивы, но очень просты в применении. Недостатки их применения заключаются в невозможности получить максимально точный слой снятого металла. При возможном усилении нажима, изменения в конфигурации детали или сплава, из которого она сделана, прямые резцы слишком сильно углубляются и способны испортить изделие. Изогнутые резцы более универсальны и пользуются большой популярностью в сфере обработки металлов. Они в обязательном порядке устанавливаются во время обработки большого вылета, и там где необходимо качественное, до миллиметра точное снятие металла с обрабатываемой поверхности. Во время усиления нажима они пружинят, снимая стружку с максимальной точностью и не создавая брак.

Шлифование

Шлифование — один из видов обработки металлов резанием. При шлифовании припуск на обработку снимается абразивными инструментами — шлифовальными кругами. Шлифовальный круг представляет собой пористое тело, состоящее из большого количества мелких зерен. Эти зерна соединены между собой особым веществом, которое называется связкой. Твердые материа­лы, из которых образованы зерна шлифовального круга, называ­ются абразивными материалами. Процесс шлифования состоит в том, что шлифовальный круг снимает с детали тонкий слой ме­талла (стружку) острыми гранями своих абразивных зерен

Принципиальной разницы в законах резания металлов метал­лическими и неметаллическими инструментами не существует.

Однако процесс резания металлов различными инструментами, в том числе и шлифование, кроме общих закономерностей, име­ет свои особенности.

К особенностям процесса шлифования следует отнести:

1) высокую скорость резания;

2) сильное размельчение и своеобразный характер снимае­мой стружки;

3) невыгодную геометрию режущих зерен шлифовального круга;

4) высокое нагревание обрабатываемой поверхности и стружки.

Поясним кратко эти особенности. При обычном шлифовании скорость резания принимается равной 30 м/сек, или 1800 м/мин, а при скоростном — 50 м/сек, или 3000 м/мин. Это в 10—30 раз превышает скорость резания при токарной обработке. Процесс снятия стружки абразивным (режущим) зерном осуществляется примерно за 0,0001—0,00005 сек.

Число абразивных зерен, расположенных на периферии шли­фовального круга, очень велико, оно измеряется на кругах сред­них размеров десятками и сотнями тысяч штук. Поэтому при шлифовании стружка снимается огромным числом беспорядочно расположенных режущих зерен, к тому же неправильной фор­мы, что приводит к очень сильному размельчению стружки и вы­зывает большой расход энергии. Затрата энергии на единицу веса снимаемого металла при шлифовании в 4—5 раз больше, чем при фрезеровании, и в 12—13 раз больше, чем при точении.

Абразивные зерна, как правило, имеют отрицательные углы резания. Работу каждого отдельно взятого абразивного зерна можно сравнивать с работой резца, имеющего отрицательный передний угол. Так, если при работе другими инструментами их режущей части можно придать наивыгоднейшую геометрию, то с зернами шлифовального круга этого сделать нельзя.

Шлифовальный круг имеет прерывистую, режущую кромку. Высокие скорости резания, трение связки шлифовального круга об обрабатываемую поверхность, произвольная геометрия абра­зивных зерен, сильное размельчение стружки приводят к тому, что в зоне шлифования выделяется большое количество тепла. Высокая температура поверхностных слоев шлифуемой детали, достигающая 1000° и больше, вызывает изменение структуры и физических свойств металла.

Снимаемая стружка в большей своей части похожа на струж­ку, снимаемую другими инструментами. Часть стружки отлетает от шлифуемой детали, а некоторая часть ее размещается в по­рах шлифовального круга и вымывается из них охлаждающей жидкостью. Небольшая часть ее сгорает. По мере притупления шлифовальные зерна врезаются в металл все с большим и боль­шим усилием. В тот момент, когда усилие по величине пре­взойдет прочность зерна или удерживающей его связки, зерно разрушится или полностью выкрошится.

ЭСКИЗ

ОПЕРАЦИОННАЯ КАРТА

ОПЕРАЦИОННАЯ КАРТА

ОПЕРАЦИОННАЯ КАРТА

Часть II

Описание цеха

Место прохождения кузнечно-сварочной практики г. Усолье-Сибирское, ул. Дзержинского 1, ООО «УСОЛЬМАШ»

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru

Рисунок.1. ООО «УСОЛЬМАШ»

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru

Рисунок.2. а) Сборочный цех; б) Рабочее место

Освещение – люминесцентное, накладные светильники.

Вентиляция - естественная, принудительная: зонт вытяжной.

Отопление – автономное, электрические настенные панел.

Сварочный цех представляет собой прямоугольное помещение с двенадцатью сварочными кабинами, в каждой из которых находится специальный стол, табурет, сварочный преобразователь, электрододержатель, горелка. Преобразователь состоит из генератора постоянного тока и электродвигателя. Он соединен с электрододержателем посредством сварочных проводов (преобразователь является источником повышенного напряжения, электромагнитного поля, ультразвука.) Вентиляция осуществляется с помощью вытяжных зонтов, 12 - ти местных и одного общего. Во входной части цеха располагаются вешалки.

Электро-сварочные работы

Виды сварки

Газоэлектрическая сварка

Представляет собой либо комбинацию газовой и дуговой сварки, либо дуговую сварку с дополнительным использованием различных газов.

Одним из процессов газоэлектрической сварки является простое совмещение действия газосварочного пламени и дуги плавящегося металлического электрода в одной сварочной зоне. Этот способ в настоящее время практического применения не имеет.

Электрошлаковая сварка

Если над дугой определенной мощности расплавить достаточно большое количество токопроводящего шлака-, то совместным действием шунтирования тока дуги и механическим воздействием веса столба шлака газовый пузырь у дуги может быть исключен. Тогда дуга погаснет и весь ток от электрода 5 будет поступать на свариваемое изделие 1 (второй электрод) вследствие электропроводности расплавленного шлака 4. В результате тепловыделения в шлаке, обусловленного протеканием тока, расплавляются как электрод 5, так и кромки свариваемого изделия 7, образуя металлическую ванну 3. При вертикальном расположении выполняемого шва (наиболее обычная схема применения электрошлаковой сварки) для предотвращения вытекания расплавленного металла и шлака применяют специальные медные водоохлаждаемые формирующие устройства 2. Эти устройства обычно механическим путем перемещают по поверхности свариваемых деталей с такой же средней скоростью с какой выполняется шов.

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru

Рисунок 4: Схема электрошлаковой сварки

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru

Рисунок 5. Схема сварки электронным лучом

Этот способ применяется главным образом для сварки металла достаточно большой толщины, причем шов выполняется на всю толщину свариваемого металла за один проход.

Комбинируя количество проволочных и пластинчатых электродов (электродов в виде пластин различного сечения, подаваемых в шлак номере их сплавления) или плавящихся мундштуков (специальная конструкция электродов в виде неподвижных пластин и подаваемых в зону плавления проволок), толщина свариваемого в один проход металла может быть практически неограниченной. В промышленности освоена сварка стальных изделий с толщиной металла в месте выполненного шва около 1 м (1000 мм).

Электроннолучевая сварка

Сварка при этом способе осуществляется в вакууме при давлении 10-4-МО-5 мм рт ст. Свариваемое изделие 8 помещается в герметичную камеру 5, в которой создан вакуум. Источником тепла для сварки является электронный луч 2, представляющий собой пучок электронов, которые излучаются нитью накала, нагреваемой от тока трансформатора 9, и устремляются к свариваемому изделию из электронной пушки 3 под действием источника высокого напряжения 4. Фокусировка пучка электронов обеспечивается воздействием электромагнитных полей электронной пушки. Относительное перемещение свариваемого изделия по отношению к электронному лучу (для выполнения швов заданной длины и направления) обеспечивается движением сварочного стола при помощи привода 6 или магнитным управлением лучом.

Этот способ сварки применяется при изготовлении изделий из легкоокисляющихся или тугоплавких металлов при относительно небольших габаритных размерах свариваемых конструкций.

Способ электроннолучевой сварки в настоящее время находит все большее применение при изготовлении различных специальных изделий.

Дефекты сварки

Каждый производственный процесс предполагает определенные отклонения от требований технический норм. Если такие отклонения выходят за пределы установленных допусков для конкретного изделия — это брак, дефект, который должен быть устранен. Если устранение дефекта невозможно, изделие не может быть принято к эксплуатации. В сварочном производстве изделием является правильно сваренное изделие, узел,

конструкция. В изделиях, выполненных сваркой, дефекты различаются по месту их расположения и по причинам возникновения. Рассмотрим их. Причины возникновения дефектов — это те, возникновение которых связано с неправильной подготовкой и сборкой элементов, нарушением режима сварки, неисправностью оборудования, небрежностью и низкой квалификацией сварщика и другими нарушениями технологического процесса. К дефектам этой группы относятся:

- несоответствие швов расчетным размерам

- непровары

- подрезы

- прожоги

- наплывы

- незаваренные кратеры.

Дефекты по причинам их возникновения связаны с явлениями, происходящими в процессе кристаллизации и формирования самой сварочной ванны и окончательного формирования шва. Это и трещины в самом шве и в околошовной зоне, шлаковые включения, поры.

Дефекты по месту их расположения — это трещины и поры, выходящие на поверхность металла, непровары, прожоги, подрезы, наплывы — все они относятся к наружным дефектам и могут быть обнаружены внешним осмотром (см.рис). К внутренним дефектам относятся те же трещины, непровары, включения и поры, но находящиеся внутри шва и не выходящие на поверхность. Их обнаруживают только методами неразрушающего контроля.

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru

Рисунок 7. Внутренние (А) и наружные (Б) дефекты сварных швов.

1— непровар; 2— трещины; 3 — несплавления; 4— шлак; 5— поры;

6— непровар; 7— подрезы; 8— трещины; 9— поры; 10— наплыв;

11 — шов неравномерной формы; 12 — прожог; 13 — кратер

Следующая разновидность дефекта — неравномерность шва. Появляется дефект по причине неустойчивого режима сварки, неточного направления электрода. Если это автоматизированная сварка, то причины в колебании напряжения в сети, проскальзывание проволоки в подающих роликах, протекание жидкого металла в зазоры, неправильный угол наклона электрода.

Дефекты сварки

Дефекты сварных швов и соединений, выполненных сваркой плавлением, возникают из-за нарушения требований нормативных документов к подготовке, сборке и сварке соединяемых узлов, механической и термической обработке сварных швов и самой конструкции, к сварочным материалам. Дефекты сварных соединений могут классифицироваться по различным признакам: форме, размеру, размещению в сварном шве, причинам образования, степени опасности и т. д. Наиболее известной является классификация дефектов, рекомендованная межгосударственным стандартом ГОСТ 30242-97 «Дефекты соединений при сварке металлов плавлением. Классификация, обозначения и определения». Согласно этому стандарту дефекты сварных соединений подразделяются на шесть групп: - трещины; - полости, поры, свищи, усадочные раковины, кратеры; - твердые включения; - несплавления и непровары; - нарушения формы шва – подрезы, усадочные канавки, превышения выпуклости, превышения проплава, наплавы, смещения, натеки, прожоги и др.; - прочие дефекты. Каждому типу дефекта соответствует цифровое обозначение, а также возможно буквенное обозначение, рекомендованное международным институтом сварки (МИС). По ГОСТ 30242-97 трещиной называется несплошность, вызванная местным разрывом шва или околошовной зоны, который может возникнуть в результате охлаждения или действия нагрузок. В зависимости от ориентации трещины делятся на: - продольные (ориентированные параллельно оси сварного шва) – цифровое обозначение 101, буквенное обозначение Ea; - поперечные (ориентированные поперек оси сварного шва) – 102, Eb; - радиальные (радиально расходящиеся из одной точки) – 103, E. Они могут быть расположены в металле сварного шва, в зоне термического влияния, в основном металле. Также выделяют следующие виды трещин: - размещенные в кратере сварного шва – 104, Ec; - групповые раздельные – 105, E; - групповые разветвленные – 106, E; - микротрещины (1001), обнаруживаемые физическими методами не менее чем при 50-тикратном увеличении. Газовая полость (по ГОСТ 30242-97) – это полость произвольной формы, не имеющая углов, образованная газами, задержанными в расплавленном металле. Порой (газовой порой, 2011) называется газовая полость обычно сферической формы. Буквенное обозначение газовой поры, используемое МИС, – Aa. Поры могут подразделяться на: - равномерно распределенные по сварному шву – 2012; - расположенные скоплением – 2013; - расположенные цепочкой – 2014. Твердые включения (300) – это твердые инородные вещества металлического или неметаллического происхождения, оставшиеся в металле сварного шва. Остроугольными включениями называются включения с хотя бы одним острым углом. Виды твердых включений: - шлаковые включения (301, Ba) – линейные (3011), разобщенные (3012), прочие (3013); - флюсовые включения (302, G) – линейные (3021), разобщенные (3022), прочие (3023); - оксидные включения (303, J); - металлические включения (304, H) – вольфрамовые (3041), медные (3042), из другого металла (3043). Несплавлением (401) называется отсутствие соединения между металлом шва и основным металлом либо между отдельными валиками сварного шва. Типы несплавлений: - по боковой поверхности (4011); - между валиками (4012); - в корне сварного шва (4013). Непровар (402, D) или неполный провар – это несплавление основного металла на участке или по всей длине шва, появляющееся из-за неспособности расплавленного металла проникнуть в корень соединения (заполнить зазор между деталями). Нарушение формы сварного шва (500) – это отклонение формы наружных поверхностей шва или геометрии соединения от заданного значения. К нарушениям формы шва по ГОСТ 30242-97 относятся: - подрезы (5011 и 5012; F); - усадочные канавки (5013); - превышения выпуклости стыкового (502) и углового (503) швов; - превышение проплава (504); - неправильный профиль шва (505); - наплав (506); - линейное (507) и угловое (508) смещения свариваемых элементов; - натек (509); - прожог (510); - не полностью заполненная разделка кромок (511); - чрезмерная асимметрия углового шва (512); - неравномерная ширина шва (513); - неровная поверхность (514); - вогнутость корня сварного шва (515) 3.6. Паяние баков, радиаторов охлаждения и трубок Следует учитывать, что технология пайки медных (латунных) и алюминиевых радиаторов охлаждения двигателя существенно отличается и провести ремонт алюминиевого радиатора в кустарных условиях практически невозможно – в этом случае на место повреждения наносится специальный герметик или клей, после чего необходимо обратиться в специализированный сервисный центр. Существует немало проверенных способов ремонта радиатора охлаждения при помощи пайки: 1)Для ремонта медного или латунного радиатора используется паяльник мощностью не менее 250 Вт с массивным жалом. Такой паяльник обеспечит не только плавление припоя, но и разогрев поврежденной поверхности. Перед началом работ тщательно зачищается поверхность радиатора в месте пайки и жало паяльника. На поврежденный участок наносится флюс и равномерно прогревается паяльником, после чего припой набирается на жало паяльника и наносится на место повреждения. 2)Крупные пробоины медных радиаторов ремонтируются при помощи наложения заплаты соответствующего размера из листовой латуни. Заплата устанавливается на место пробоя и прогревается газовой горелкой, после чего пропаивается по контуру. Ремонт поврежденной трубки. При необходимости замены поврежденная трубка выпаивается (для этого в отверстие вводится разогретый стержень соответствующего диаметра), а на ее место устанавливается и запаивается новая. 3)Ремонт поврежденной трубки. При необходимости замены поврежденная трубка выпаивается (для этого в отверстие вводится разогретый стержень соответствующего диаметра), а на ее место устанавливается и запаивается новая. 4)Брейзинг (ремонт медных радиаторов с применением латунных и медно-фосфорных припоев). Температура плавления таких припоев находится в пределах 550°-1000°, что требует применения более мощного оборудования и высокой квалификации специалиста для проведения работ, однако в результате характеристики отремонтированного изделия не уступают заводским. 5)Для ремонта алюминиевых радиаторов применяются только специальные припои и активные флюсы, разрушающие оксидную пленку. Другим способом разрушения пленки является добавление железных опилок в канифоль и припой. Выполнение работ требует особой аккуратности, так как при нагреве алюминий становится хрупким, а температура плавления металла находится в пределах 650°C. После обработки всех повреждений перед установкой в автомобиль радиатор необходимо проверить на наличие протеканий.

Электроды

Сварочный электрод — металлический или неметаллический стержень из электропроводного материала, предназначенный для подвода тока к свариваемому изделию. В настоящее время выпускается более двухсот различных марок электродов, причем более половины всего выпускаемого ассортимента составляют плавящиеся электроды для ручной дуговой сварки.

Техника безопасности при работе на металлорежущих станках. Пожарная безопасность при работе в механической мастерской - student2.ru Сварочные электроды делятся на плавящиеся и неплавящиеся. Неплавящиеся электроды изготовляют из тугоплавких материалов, таких как вольфрам по ГОСТ 23949-80 "Электроды вольфрамовые сварочные неплавящиеся", синтетический графит или электротехнический уголь. Плавящиеся электроды изготовляют из сварочной проволоки, которая согласно ГОСТ 2246—70 разделяется на углеродистую, легированную и высоколегированную. Поверх металлического стержня методом опрессовки под давлением наносят слой защитного пок

Наши рекомендации