Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения.

Термодинамика живых систем

Для обновления элементов в живых системах требуется постоянный приток извне веществ и энергии, а также вывод во внешнюю среду тепла и продуктов распада. Это означает, что живые системы обязательно должны быть открытыми системами. Благодаря этому в них создается и поддерживается химическое и физическое неравновесие. Именно на этом неравновесии основана работоспособность живой системы, направленная на поддержание высокой упорядоченности своей структуры, а, значит, на сохранение жизни и осуществление различных жизненных функций. Кроме того, живая система, благодаря свойству открытости, достигает стационарности, т.е. постоянства своего неравновесного состояния.

В изолированной системе (такая система не обменивается с внешней средой веществом и энергией), находящейся в неравновесном состоянии, происходят необратимые процессы, которые стремятся привести систему в равновесное состояние. Переход живой системы в такое состояние означает для нее смерть.

Таким образом, открытость – одно из важнейших свойств живых систем.

Весьма важным является вопрос о применимости законов термодинамики к живым системам.

Открытые системы, термодинамические системы, которые обмениваются с окружающей средой веществом (а также энергией и импульсом). К наиболее важному типу О. с. относятся химические системы, в которых непрерывно протекают химические реакции, происходит поступление реагирующих веществ извне, а продукты реакций отводятся. Биологические системы, живые организмы можно также рассматривать как открытые химические системы. Такой подход к живым организмам позволяет исследовать процессы их развития и жизнедеятельности на основе законов термодинамики неравновесных процессов, физической и химической кинетики.

Теорема Пригожина — теорема термодинамики неравновесных процессов. Согласно этой теореме, стационарному состоянию системы (в условиях, препятствующих достижению равновесного состояния) соответствует минимальное производство энтропии. Если таких препятствий нет, то производство энтропии достигает своего абсолютного минимума — нуля.

Формулировка теоремы: В стационарном состоянии продукция энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальной и константной. Если система не находится в стационарном состоянии, то она будет изменяться до тех пор, пока скорость продукции энтропии, или, иначе, диссипативная функция системы не примет наименьшего значения.

№10. Определение теплового эффекта реакции нейтрализации. Сущность метода и расчетные формулы. Значение термохимии для биологии и медицины.

1) Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

ΔHреакцииO = ΣΔHfO (продукты) — ΣΔHfO (реагенты)

№11. Современные представления о строении атома. Характеристика энергетического состояния электрона системой квантовых чисел.

Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru

Спросить

№13 Основное и возбужденное состояние атома на примере атомов бериллия, углерода и серы.

Спросить

№14 Основное и возбужденное состояние атома на примере атомов железа, марганца, хрома.

Смотреть

№15 Периодический закон и периодическая система Д.И. Менделеева в системе квантовой теории строения атома. Современная формулировка периодического закона

Периодический закон Менделеева фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в 1869 при сопоставлении свойств всех известных в то время элементов и величин их атомных весов. Физический смысл П. з. был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома (см. Атом). Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе П. з. лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация П. з.- кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z (см. Атомная физика).Какого-либо общего математического выражения П. з. не существует. П. з. имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов.

Катализ и его виды. Примеры гомогенного и гетерогенного катализа.

Катализ — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов).

Различают два вида катализа - гомогенный (однородный) и гетерогенный (неоднородный) катализ.

При гомогенном катализе реагирующие вещества и катализатор образуют однофазную систему - газовую или жидкую, между катализатором и реагирующими веществами отсутствует поверхность раздела. Например, разложение пероксида водорода в присутствии ионов йода: H2О2 + I → H2О + IO

H2О2 + IO → H2О + О2 + I

При гетерогенном катализе реагирующие вещества и катализатор образуют систему из разных фаз. В этом случае между катализатором и реагирующими веществами существует поверхность раздела. Обычно катализатор - твердое вещество, а

реагирующие вещества - газы или жидкости. Примером Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты.

Медицинское применение

Разбавленные растворы (около 0,1 %) перманганата калия нашли широчайшее применение в медицине как антисептическое средство, для полоскания горла, промывания ран, обработки ожогов. В качестве рвотного средства для приёма внутрь при некоторых отравлениях используют разбавленный раствор.

Окислительные свойства перманганата калия в кислой среде:
2KMnO4+10KJ+8H2SO4(р)=2MnSO4+6K2SO4+5J2+8H2O
Mn7++5е=Mn2+
2J--2е=J20
2KMnO4+10FeSO4+8H2SO4(р)=2MnSO4+K2SO4+5Fe2(SO4)3+8H2O
Mn7++5е=Mn2+
Fe2+-е=Fe3+
2KMnO4+5Na2SO3+3H2SO4(р)=2MnSO4+K2SO4+5Na2SO4+3H2O
Mn7++5е=Mn2+
S4+-2е=S6+
Окислительные свойства перманганата калия в нейтральной среде:
2KMnO4+3Na2SO3+H2O=2MnO2+K2SO4+3Na2SO4+2KOH
Mn7++3е=Mn4+
S4+-2е=S6+
2KMnO4+3MnSO4+2H2O=5MnO2+K2SO4+2H2SO4
Mn7++3е=Mn4+
Mn2+-2е=Mn4+
2KMnO4+6KI+4H2O=2MnO2+3I20+8KOH
Mn7++3е=Mn4+
2J--2е=J20
Окислительные свойства перманганата калия в щелочной среде:
2KMnO4+Na2SO3+2KOH=2K2MnO4+Na2SO4+H2O
Mn7++1е=Mn6+
S4+-2е=S6+

№38 окислительно –востоновительная двойственность свойств пероксид водорода И применение

Окислительно-восстановительные свойства

Пероксид водорода обладает окислительными, а также восстановительными свойствами. Он окисляет нитриты в нитраты, выделяет иод из иодидов металлов, расщепляетненасыщенные соединения по месту двойных связей. Пероксид водорода восстанавливает соли золота и серебра, а также кислород при реакции с водным раствором перманганата калия в кислой среде.

При восстановлении Н2O2 образуется Н2O или ОН-, например: Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru

При действии сильных окислителей H2O2 проявляет восстановительные свойства, выделяя свободный кислород: Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru

Реакцию KMnO4 с Н2O2 используют в химическом анализе для определения содержания Н2O2:

Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru

Окисление органических соединений пероксидом водорода (например, сульфидов и тиолов) целесообразно проводить в среде уксусной кислоты.

Применение. В медицине растворы пероксида водорода применяются как антисептическое средство. При контакте с повреждённой кожей и слизистыми пероксид водорода под влиянием фермента каталазы распадается с выделением кислорода, что способствует сворачиванию крови[источник не указан 245 дней] и создаёт неблагоприятные условия для развития микроорганизмов. Однако такое действие непродолжительно и обладает слабым эффектом. Тем не менее, пероксид водорода (аптечное название — перекись водорода, 3 %) применяется при первичной обработке ран (в том числе открытых).

№39

№40 Окислительно-восстановительные потенциалы

Количественной мерой окислительной способности окислителя (и одновременно восстановительной способностиего восстановленной формы) является электрический потенциал электрода φ (электродный потенциал), на котором одновременно и с равными скоростями протекают полуреакция его восстановления и обратная ей полуреакция окисления соответствующей восстановленной формы.

Этот окислительно-восстановительный потенциал измеряется по отношению к стандартному водородному электроду и характеризует пару «окисленная форма – восстановленная форма» (поэтому выражения «потенциал окислителя» и «потенциал восстановителя», строго говоря, неверны). Чем выше потенциал пары, тем сильнее выражена окислительная способность окислителя и, соответственно, слабее – восстановительная способность восстановителя.

И напротив: чем ниже потенциал (вплоть до отрицательных значений), тем сильнее выражены восстановительные свойства восстановленной формы и слабее - окислительные свойства сопряженного с ней окислителя.

Направление протекания реакции Движущие силы химической реакции обусловлены ее стремлением к уменьшению запаса энергии, т.е. к уменьшению энтальпии при p = const и ее стремлением к увеличению энтропии.

В ходе химической реакции участвующие частицы перегруппировываются таким образом, чтобы уменьшалась энергия системы; это проявляется в их сближении и взаимодействии. Вместе с тем реагирующие частицы обладают отчетливой тенденцией к беспорядочному расположению. Эти два фактора обусловливают химическую обратимость реакций; преобладающее направление реакции определяется значением и знаком величин ΔH и ΔS.

критерием самопроизвольного протекания химических реакций является отрицательное значение энергии Гиббса: ΔG < 0

Для экзотермических реакций (ΔH < 0) величина ΔG также, как правило, меньше нуля, поскольку в уравнении ΔG = ΔH - TΔS при ΔS > 0 вычитаемое будет всегда отрицательным, а при ΔS < 0 - положительным, но небольшим по значению вплоть до очень высоких температур, и, следовательно, не превышающим отрицательного значения ΔH.

Для эндотермических реакций (ΔH > 0), имеющих ΔS < 0, их протекание в заданном направлении невозможно ни при какой температуре, т.к. всегда ΔG > 0. Для реакций с ΔS > 0 их протекание возможно, но только при таких высоких температурах, когда вычитаемое (- TΔS) превысит положительное значение энтальпии реакции.

№42

Изотерма адсорбции Гиббса

Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru

Расчет энергии Гиббса адсорбции на крупнопористом адсорбенте проводят следующим образом.

Общий объем адсорбционного слоя можно представить в виде суммы парциальных объемов адсорбированных компонентов. Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru где Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru - объем мезопор адсорбента. Рассчитанные значения энергии Гиббса адсорбции показывают, что увеличение длины углеводородного радикала ПАВ затрудняет адсорбцию на пористом адсорбенте.

Таким образом, характер адсорбции зависит как от природы ПАВ, так и от вида адсорбента. Характер адсорбции во многом определяет такие процессы, как поверхностное модифицирование волокон- например, антиэлектростатическую обработку, моющее действие ПАВ и т.д.

№44 Физическая адсорбция –

Уравнение Фрейндлиха

Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения. - student2.ru

Изотерму БЭТ не нашла, но она есть в лекции

№47Хроматография Хроматография – процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Разделение сложных смесей хроматографическим способом основано на различной сорбируемости компонентов смеси. В процессе хроматографирования так называемая подвижная фаза (элюент), содержащая анализируемую пробу, перемещается через неподвижную фазу. Обычно неподвижная фаза представляет собой вещество с развитой поверхностью, а подвижная – поток газа или жидкости, фильтрующейся через слой сорбента. При этом происходит многократное повторение актов сорбции – десорбции, что является характерной особенностью хроматографического процесса и обуславливает эффективность хроматографического разделения. Качественный хроматографический анализ, т.е. индетификация вещества по его хроматограмме, может быть выполнен сравнением хроматограических характеристик, чаще всего удерживаемого объема (т.е. объема подвижной фазы, пропущенной через колонку от начала ввода смеси до появления данного компонента на выходе из колонки), найденных при определенных условиях для компонентов анализируемой смеси и для эталона.Количественный хроматографический анализ проводят обычно на хроматографе. Метод основан на измерении различных параметров хроматографического пика, зависящих от концентрации хроматографируемых веществ – высоты, ширины, площади и удерживаемого объема или произведения удерживаемого объема на высоту пика.В количественной газовой хроматографии применяют методы абсолютной градуировки и внутренней нормализации, или нормировки. Используется также метод внутреннего стандарта. При абсолютной градуировке экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики или рассчитывают соответствующие коэффициенты. Далее определяют те же характеристики пиков в анализируемой смеси, и по градуировочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным при определении микропримесей.

Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения.

1) Закон Гесса — основной закон термохимии, который формулируется следующим образом:

количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы).

Закон открыт русским химиком Г. И. Гессом в 1840 г.; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него:

Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье — Лапласа).

Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):

Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):

Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры.

Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.

2) Термохимические рассчеты.

Основной принцип на котором основываются все термохимические рассчеты установлены химиком Гессом. Этот принцип известен под названием закон гесса и являющийся частным случаем закона сохранения энергии.

3) Термохимические уравнения

Термохимические уравнения реакций - это уравнения, в которых около символов химических соединений указываются агрегатные состояния этих соединений или кристаллографическая модификация и в правой части уравнения указываются численные значения тепловых эффектов

Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.

В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую.

№4 Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.

1) Обратимые и необратимые процессы, пути изменения состояния термодинамической системы. Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия, теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия.

2) Примеры необратимых процессов: консервация тканей при низких температурах. Обратимые процессы являются предельным случаем реальных процессов, происходящих в природе и осуществляемых в промышленности или в лаборатории.

№5 Второе начало термодинамики. Энтропия. Стандартные энтропии. Критерий направления самопроизвольных процессов в изолированных системах.

1) Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

2) Энтропия есть мера вероятности пребывания системы в данном состоянии или мера неупорядоченности систем. Важное значение понятия энтропии связано с тем, что на основе этой величины можно прогнозировать направление самопроизвольного протекания процессов.

№6 Энергия Гиббса. Термодинамичеческие условия равновесия.

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида :

G=U+ PV-TS

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)

Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. . Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия. термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).

В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз

№7 Критерии направления самопроизвольных процессов в закрытых и открытых системах. Энтальпийный и энтропийный факторы в уравнении гиббса. Экзергонический и эндергонические реакции.

Реальные процессы проводятся, как правило, в закрытых системах в изобарно-изотермических (р,Т=соnst)

или изохорно-изотермических (V, Т= соnst) условиях. Критерием направленности самопроизвольного процесса в этих случаях является знак изменения энергии Гиббса dG .

Энергия Гиббса G = Н –ТS = U + рV –ТS.

Уравнения также можно представить в виде: Н = G +ТS; U = А + ТS. Где величина ТS характеризует связанную с частицами системы энергию , т.е. ту часть полной энергии системы, которая рассеивается в окружающей среде в виде теплоты (так называемая потерянная работа).

Судить о возможности самопроизвольного протекания процесса можно по знаку изменения функции свободной энергии: если Д ( 7 О, т.е. в процессе взаимодействия происходит уменьшение свободной энергии, то процесс термодинамически возможен. Если ДС 0, то протекание процесса невозможно. Таким образом, все процессы могут самопроизвольно протекать в сторону уменьшения свободной энергии. Эта формулировка справедлива как для изолированных, так и для открытых систем

Энтальпийный и энтропийный факторы.Процессы могут протекать самопроизвольно (ΔG<0), если они сопровождаются уменьшением энтальпии (ΔH<0) и увеличением энтропии системы (ΔS>0). Если же энтальпия системы увеличивается (ΔH>0), а энтропия уменьшается (ΔS<0), то такой процесс протекать не может (ΔG>0). При иных знаках ΔS и ΔН принципиальная возможность протекания процесса определяется соотношением энтальпийного (ΔH) и энтропийного (ТΔS) факторов.

Если ΔН>0 и ΔS>0, т.е. энтальпийная составляющая противодействует, а энтропийная благоприятствует протеканию процесса, то реакция может протекать самопроизвольно за счет энтропийной составляющей, при условии, что |ΔH|<|TΔS|.

Если, энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию процесса, то реакция может протекать самопроизвольно за счет энтальпийной составляющей, при условии, что |ΔH|>|TΔS|.

Наши рекомендации