Микроклимат производственных помещений. Терморегуляция. Влияние микроклимата на работоспособность человека

Состояние здоровья человека, его работоспособность в значительной степени зависят от микроклимата на рабочем месте. Не имея возможности эффективно влиять на протекающие в атмосфере климатообразующие процессы, люди располагают качественными системами управления факторами воздушной среды внутри производственных помещений.

Микроклимат производственных помещений — это климат внутренней среды данных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а также температурой окружающих поверхностей (ГОСТ 12.1.005 "Общие санитарно-гигиенические требования к воздуху рабочей зоны"). Требования этого государственного стандарта установлены для рабочих зон — пространств высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного и временного пребывания работающих. Постоянным считают рабочее место, на котором человек находится более 50 % рабочего времени (или более 2 ч непрерывно). Если при этом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона.

Факторы, влияющие на микроклимат, можно разделить на две группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и др.). Для поддержания параметров воздушной среды рабочих зон в пределах гигиенических норм решающее значение принадлежит факторам второй группы.

ГОСТ 12.1.005 установлены оптимальные и допустимые микроклиматические условия.

При длительном и систематическом пребывании человека в оптимальных микроклиматических условиях сохраняется нормальное функциональное и тепловое состояние организма без напряжения механизмов терморегуляции. При этом ощущается тепловой комфорт (состояние удовлетворения внешней средой), обеспечивается высокий уровень работоспособности. Такие условия предпочтительны на рабочих местах.

Допустимые микроклиматические условия при длительном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжение механизмов терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. При этом не нарушается состояние здоровья, но возможны дискомфортные теплоощущения, ухудшение самочувствия и снижение работоспособности.

Из таблицы 14.1 видно, что параметры микроклимата производственных помещений зависят от степени тяжести выполняемых работ и периода года (теплым принято считать период года со среднесуточной температурой наружного воздуха выше 10 °С, холодным — с температурой 10 °С и ниже). Оптимальные параметры микроклимата распространяются на всю рабочую зону производственных помещений без разделения рабочих мест на постоянные и непостоянные. Если по технологическим требованиям, технически и экономически обоснованным причинам оптимальные параметры микроклимата не могут быть обеспечены, то устанавливают пределы их допустимых значений (табл. 14,2). Определяя характеристику помещения по категории выполняемых работ (уровню энергозатрат), ориентируются на те из них, которые выполняются 50 % (и более) работающими.

Кроме указанных в таблице 14.1 параметров микроклимата нормируется также интенсивность теплового облучения работников. Допустимое значение теплового облучения на постоянных и непостоянных рабочих местах не должно превышать 35 Вт/м2, если в зоне облучения находится 50 % и более поверхности тела. При размере последней от 25 до 50 % предел допустимой интенсивности облучения составляет 70 Вт/м2, а при облучении менее 25 % поверхности тела — 100 Вт/м2. Интенсивность открытых источников теплового излучения (пламя, нагретый металл и т. п.) не должна превышать 140 Вт/м2 при облучении не более 25 % поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе лица и глаз.

Нагрев кожи человека до 45 °С вызывает ее повреждение и болевые ощущения, а при температуре 52 °С происходит необратимое свертывание белков тканей. Поэтому в целях профилактики тепловых травм температура нагретых поверхностей машин, оборудования или ограждающих их конструкций должна быть не выше 45 °С.

Допустимые перепады температуры воздуха по высоте рабочей зоны не должны превышать 3 °С для работ всех категорий, а по горизонтали 4 °С для легких работ, 5 °С для работ средней тяжести и 6 °С для тяжелых работ. Во всех случаях абсолютные значения температуры воздуха, измеренной на разной высоте и в различных участках производственных помещений в течение смены, должны входить в пределы, устанавливаемые таблицами 14.1 и 14.2. Необходимо отметить, что параметры воздушной среды животноводческих и птицеводческих зданий регламентированы Нормами технологического проектирования и направлены на получение максимальной продуктивности поголовья, содержащегося в таких постройках. Поэтому требования ГОСТ 12.1.005 не распространяются на воздух рабочей зоны в этих зданиях, а также в помещениях для хранения сельскохозяйственной продукции

МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ — метеорологические условия внутренней среды помещений, которые определяются действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения; комплекс физических факторов, оказывающих влияние на теплообмен человека с окружающей средой, на тепловое состояние человека и определяющих самочувствие, работоспособность, здоровье и производительность труда. Показатели микроклимата: температура воздуха и его относительная влажность, скорость его движения, мощность теплового излучения.

Жизнедеятельность человека может нормально протекать лишь при условии сохранения температурного гомеостаза организма, что достигается за счет системы терморегуляции и деятельности др. функциональных систем: сердечно-сосудистой, выделительной, эндокринной и систем, обеспечивающих энергетический, водно-солевой и белковый обмен. Для сохранения постоянной температуры тела организм должен находиться в термостабильном состоянии, которое оценивается по тепловому балансу. Тепловой баланс достигается координацией процессов теплопродукции и теплоотдачи. Микроклимат (далее — М.) по степени влияния на тепловой баланс человека подразделяется на нейтральный, нагревающий, охлаждающий.

Нейтральный микроклимат при воздействии на человека в течение рабочей смены обеспечивает тепловой баланс организма. Разность между величиной теплопродукции Qм и суммарной теплоотдачей Qсум находится в пределах 2 Вт, доля теплоотдачи испарением влаги не превышает 30%.

Охлаждающий микроклимат — сочетание параметров, при котором суммарная теплоотдача в окружающую среду Qсумпревышает величину теплопродукции организма. Это приводит к образованию общего и (или) локального дефицита тепла в теле человека (> 2 Вт). Охлаждающий М. приводит к обострению язвенной болезни, радикулита, обусловливает возникновение заболеваний органов дыхания, сердечно-сосудистой системы.

При выраженном охлаждении растет число тромбоцитов и эритроцитов в крови, увеличивается содержание холестерина, вязкость крови, что повышает возможность тромбообразования. Охлаждение человека (как общее, так и локальное) приводит к изменению его двигательной реакции, нарушает координацию и способность выполнять точные операции, вызывает тормозные процессы в коре головного мозга, что может быть причиной возникновения различных форм травматизма. При локальном охлаждении кистей снижается точность выполнения рабочих операций. Работоспособность уменьшается на 1,5% при снижении температуры пальцев на каждый градус.

Хроническое охлаждение (в т. ч. локальное) в процессе трудовой деятельности вызывает прежде всего "холодовые" нейроваскулиты, синдром Рейно, ангиотрофоневрозы. Симптомами хронического поражения холодом стоп и кистей являются снижение температуры кожи, нарушение тактильной чувствительности, увеличение показателей влажности, трофические расстройства. Влияние хронического охлаждения усугубляется воздействием локальной вибрации. При этом сокращаются сроки развития вибрационного поражения.

Нагревающий микроклимат — сочетание параметров, при котором имеет место изменение теплообмена человека с окружающей средой, проявляющееся в накоплении тепла в организме (> 2 Вт) и (или) в увеличении доли потерь тепла испарением влаги (> 30%). Воздействие нагревающего М. также вызывает нарушение состояния здоровья, снижение работоспособности и производительности труда. Нагревающий М. может привести к заболеванию общего характера, которое проявляется чаще всего в виде теплового коллапса. Он возникает вследствие расширения сосудов и уменьшения давления в них крови. При этом температура тела не слишком высокая. Обморочному состоянию предшествует головная боль, чувство слабости, головокружение, тошнота. Кожа сначала краснеет, потом бледнеет и покрывается холодным потом. Частота сердечных сокращений увеличивается. Это состояние быстро проходит при отдыхе в прохладном месте.

Нагревающий М. является причиной болезней неинфекционного происхождения. Возникающее в этих условиях интенсивное потоотделение сопровождается потерями солей и воды в организме. Увеличиваются количество тромбоцитов в крови и ее вязкость, уровень холестерина в плазме крови, что повышает вероятность тромбозов (в частности, мозговых артерий). Заболеваемость среди рабочих горячих цехов в 1,2—2,1 раза выше, чем среди рабочих, не подвергающихся постоянному действию нагревающего М. Термическая нагрузка в основных цехах металлургического производства обусловливает 37% всех болезней органов дыхания и 39% заболеваний органов пищеварения. Возникают заболевания сердечно-сосудистой системы, связанные со значительным напряжением гемодинамики, проявляющиеся в виде стойкихмиокардиопатий, нейроциркуляторных дистоний по гипертоническому типу. Происходит интенсивное биологическое старение рабочих, труд которых связан со значительной тепловой и физической нагрузкой, особенно в возрастной группе от 50 лет. Наблюдаются головные боли, повышенная потливость и утомляемость. Выявлено достоверное повышение стандартизованных показателей смертности от заболеваний сердечно-сосудистой системы.

Тепловой удар очень опасен. Даже при раннем выявлении каждый пятый случай является смертельным. При общем тепловом застое значительно повышается температура тела, что приводит к прямому повреждению тканей, особенно в ЦНС. Тошнота и рвота предшествуют шоковой стадии с глубокой потерей сознания, иногда сопровождающейся судорогами. Вследствие расстройства центра терморегуляции снижается потообразование. Кожа горячая, сухая, сначала имеет красный цвет, а потом приобретает серую окраску. Смертность тем выше, чем выше температура тела. Особенно подвержены тепловым ударам лица, имеющие массу тела выше нормы. Существует линейная зависимость между ее превышением и относительной вероятностью смерти от теплового удара. Наибольшая частота тепловых ударов наблюдается у людей в возрасте 46 лет и старше. Относительно часто тепловые удары случаются с людьми и более молодого возраста (18—20 лет). В первые недели работы в нагревающей среде тепловые удары встречаются чаще, чем в последующие.

В результате солнечного удара в первую очередь нарушаются функции головного мозга из-за местного перегревания незащищенной от солнца головы. К тепловому истощению может привести уменьшение влаги в организме. Уменьшение содержания влаги в теле человека на 1—2% от общей массы не приводит ккаким-л. существенным изменениям в организме (кроме возникновения чувства жажды). С усилением обезвоживания организма наступают такие явления, как сонливость, некоординированные движения и существенное снижение работоспособности. При дефиците влаги больше 10% массы тела наступает потеря сознания, иногда — состояние сильного возбуждения и смерть.

Определяют как тепловое состояние (ТС) функциональное состояние человека, обусловленное его теплообменом с окружающей средой, характеризующееся содержанием и распределением тепла в глубоких ("ядро") и поверхностных ("оболочка") тканях организма, а также степенью напряжения механизмов терморегуляции.

Показатели ТС:

температура кожи (средневзвешенная и локальная);

температура "ядра" тела;

средняя температура тела;

изменение теплосодержания в организме;

величина влагопотерь;

изменение частоты сердечных сокращений;

теплоощущение.

Разработаны классификация ТС (оптимальное, допустимое, предельно допустимое, недопустимое) и метод его оценки в целях обоснования гигиенических требований к М. рабочих мест, а также меры профилактики охлаждения и перегреванияработников. По степени влияния на самочувствие человека, его работоспособность микроклиматические условия подразделяются на оптимальные, допустимые, вредные и опасные.

Оптимальные микроклиматические условия характеризуются такими параметрами показателей М., которые при их сочетанном воздействии на человека в течение рабочей смены обеспечивают оптимальное ТС организма. В этих условиях напряжение терморегуляции минимально, общие и (или) локальные дискомфортные теплоощущения отсутствуют, что позволяет сохранять высокую работоспособность.

Допустимые микроклиматические условия характеризуются такими параметрами показателей М., которые при их сочетанном действии на человека в течение рабочей смены могут вызывать изменение ТС. Это приводит к умеренному напряжению механизмов терморегуляции, незначительным дискомфортным общим и (или) локальным теплоощущениям. При этом сохраняется относительнаятермостабильность, может иметь место временное (в течение рабочей смены) снижение работоспособности, но не нарушается здоровье (в течение всего периода трудовой деятельности). Допустимы такие параметры М., которые при их совместном действии на человека обеспечивают допустимое ТС организма.

Вредные микроклиматическис условия — параметры М., которые при их сочетанном действии на человека в течение рабочей смены вызывают изменения ТС организма: выраженные общие и (или) локальные дискомфортные теплоощущения, значительное напряжение механизмов терморегуляции, снижение работоспособности. При этом не гарантируется термостабильность организма человека и сохранение его здоровья в период трудовой деятельности и после ее окончания. Степень вредности М. определяется как величинами его составляющих, так и продолжительностью их воздействия на работающих (непрерывно и суммарно за рабочую смену, за период трудовой деятельности).

Опасные (экстремальные) микроклиматические условия — параметры М., которые при их сочетанном действии на человека даже в течение непродолжительного времени (менее 1 ч) вызывают изменение ТС, характеризующееся чрезмерным напряжением механизмов терморегуляции, что может привести к нарушению состояния здоровья и возникновению рискасмерти.

Нормативные требования к отдельным показателям М., их сочетаниям, разработанные на основе изучения теплообмена и ТС человека в микроклиматических камерах и в производственных условиях, а также на основе клинических и эпидемиологических исследований, изложены в СанПиН 2.2.4.548—96.

В производственных помещениях, где допустимые нормативные величины М. поддерживать не представляется возможным, необходимо проводить мероприятия по защите работников от возможного перегревания и охлаждения. Это достигается различными средствами:

применением систем местного кондиционирования воздуха;

использованием индивидуальных средств защиты от повышенной или пониженной температуры;

регламентацией периодов работы в неблагоприятном М. и отдыха в помещении с М., нормализующим ТС;

сокращением рабочей смены и др.

Профилактика перегревания работников в нагревающем М. включает следующие мероприятия:

нормирование верхней границы внешней термической нагрузки на допустимом уровне применительно к 8-часовой рабочей смене;

регламентация продолжительности воздействия нагревающей среды (непрерывно и за рабочую смену) для поддержания среднесменного ТС на оптимальном или допустимом уровне;

использование специальных СКЗ и СИЗ, уменьшающих поступление тепла извне к поверхности тела человека и обеспечивающих допустимое ТС работников.

Защита от охлаждения осуществляется посредством одежды, изготовленной в соответствии с требованиями ГОСТ 29335—92 и 29338—92 "Костюмы мужские и женские для защиты от пониженных температур. Технические условия". Для уменьшения теплопотерь могут быть использованы также локальные источники тепла, обеспечивающие сохранение должного уровня общего и локального теплообмена организма. Применение одежды не исключает соблюдения должной регламентации времени работы в неблагоприятной среде, а также общего режима труда, утвержденного соответствующим предприятием и согласованного с органами ГСЭН. Для нормализации ТС организма регламентируют продолжительность непрерывного пребывания на холоде и продолжительность пребывания в помещении с комфортными условиями.

Теплообмен человека с окружающей средой. Человек постоянно находится в состоянии обмена теплотой с окружающей средой. Жизнедеятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Ее количество зависит от степени физического напряжения в определенных климатических условиях и составляет от 85 Дж/с (в состоянии покоя) до 500 Дж/с (при тяжелой работе). Для нормального течения физиологических процессов в организме человека необходимо, чтобы выделяемое организмом тепло (Qтв) полностью отдавалось окружающей среде (Qто), то есть имел бы место тепловой баланс Qтв = Qто. Превышения тепловыделения организма над теплоотдачей в окружающую среду (Qтв >Qто) приводит к нагреву организма и к повышению температуры тела. Такое тепловое самочувствие характеризуется понятием жарко. Наоборот, превышение теплоотдачи над тепловыделением (Qтв<Qто) приводит к охлаждению организма и снижению его температуры. Такое тепловое самочувствие характеризуется понятием холодно.

Одним из важных показателей теплового состояния организма является средняя температура тела (внутренних органов) порядка 36,5 °С. Даже незначительные отклонения от этой температуры в ту или другую сторону приводят к ухудшению самочувствия человека. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы.

Теплообмен между организмом человека и окружающей средой зависит от параметров микроклимата: температуры окружающей среды, скорости движения воздуха, относительной влажности воздуха. Чтобы понять влияние того или иного показателя на теплообмен, необходимо рассмотреть механизмы за счет которых теплота передается от одного предмета к другому (в частности, от человека к окружающей среде и наоборот).

Отдача тепла организмом человека происходит посредством:

- теплопроводности Qт;

- конвекции qк в результате смывания воздухом тела человека;

- излучения на окружающие поверхности Qиз;

- испарения влаги с поверхности кожи Qис и при дыхании Qв.

Теплота может передаваться только от тела с более высокой температурой к телу с более низкой температурой. Интенсивность отдачи теплоты зависит от разности температур тел (в нашем случае - это температура тела человека и температура окружающих человека предметов и воздуха) и теплоизолирующих свойств одежды. Так как температура тела человека относительно величины 36,5 °С изменяется в небольшом диапазоне, то изменение отдачи теплоты от человека происходит, в основном, за счет изменения температуры окружающей человека среды. Если температура воздуха или окружающих человека предметов выше температуры 36,5 °С, происходит не отдача теплоты от человека, а наоборот, его нагрев.

Одежда человека обладает теплоизолирующими свойствами: чем она теплее, тем меньше теплоты переходит от человека к окружающей среде. Таким образом, регулировать теплообмен человека с окружающей средой можно за счет температуры окружающей среды и выбора одежды с различными теплоизолирующими свойствами.

Воздух, находящейся вблизи от теплого предмета, нагревается. Нагретый воздух имеет меньшую плотность и, как более легкий, поднимается вверх, а его место занимает более холодный воздух окружающей среды. Явление обмена порций воздуха за счет разности плотностей теплого и холодного воздуха называется естественной конвекцией.

Если теплый предмет обдувать холодным воздухом, то процесс замены более теплых слоев воздуха у предмета на более холодный ускоряется. В этом случае у нагретого предмета будет находиться более холодный воздух, разность температур между нагретым предметом и окружающим воздухом будет больше и интенсивность отдачи тепла от предмета окружающему воздуху возрастет. Это явление называется вынужденной конвекцией. Таким образом, регулировать теплообмен между человеком и окружающей средой можно изменением скорости движения воздуха, т.е. передача теплоты конвекцией тем больше, чем ниже температура окружающей среды и чем выше скорость движения воздуха.

Тепловая энергия, превращаясь на поверхности горячего тела в лучистую (электромагнитную волну) - инфракрасное излучение, передается на другую (холодную поверхность), где вновь превращается в тепловую. Лучистый поток тем выше, чем больше разница температур человека и окружающих предметов. Причем лучистый поток может исходить от человека, если температура окружающих предметов меньше температуры человека, и наоборот, если окружающие предметы более нагреты, т.е. лучистый поток при теплообмене излучением тем больше, чем ниже температура окружающих человека поверхностей.

Интенсивность испарения, а следовательно, и величина отдачи тепла от организма окружающей среде зависит: во-первых, от температуры окружающей среды: чем выше температура, тем выше интенсивность испарения; во-вторых, от влажности воздуха: чем выше влажность, тем меньше интенсивность испарения; в-третьих, от скорости движения: интенсивность испарения возрастает при увеличении скорости движения воздуха; в-четвертых, от интенсивности работы: уровень потоотделения повышается пропорционально тяжести выполненной работы.

В процессе дыхания воздух окружающей среды, попадая в легкие человека, нагревается и одновременно насыщается водяными парами. Таким образом, теплота выводится из организма человека с выдыхаемым воздухом(Qв). Количество теплоты, выделяемой человеком с выдыхаемым воздухом, зависит от его физической нагрузки, влажности и температуры окружающего (вдыхаемого) воздуха. Чем больше физическая нагрузка и ниже температура окружающей среды, тем больше отдается теплоты с выдыхаемым воздухом. С увеличением температуры и влажности окружающего воздуха количество теплоты, отводимой через дыхание, уменьшается.

Таким образом, направление тепловых потоков Qт Qк Qиз может быть от человека к окружающим его воздуху и предметам и наоборот, в зависимости от того, что больше - температура тела человека или окружающего воздуха и окружающих его тел.

Тепловыделения организма человека определяются прежде всего величиной мышечной нагрузки при деятельности человека, а теплоотдача – температурой окружающего воздуха и предметов, скоростью движения и относительной влажностью воздуха.

Параметры микроклимата в природной среде и в производственных условиях могут изменяться в широких пределах. Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Нарушение теплового баланса в ту или иную сторону вызывают в организме человека реакции, способствующие его восстановлению.

Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называется терморегуляцией. Она позволяет сохранять температуру внутренних органов постоянной (Зб,5 °С) и не имеет в своем составе специфических органов. Противостояние холоду или жаре происходит под контролем нервной системы, которая включает конкретные органы в специфическую функциональную систему, обеспечивающую поддержание постоянной температуры наиболее эффективным и экономичным путем. Физиологическая система терморегуляции включает в себя регуляцию теплообразования и теплоотдачи.

Терморегуляция осуществляется следующими способами: биохимическим путем, путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем состоит в изменении интенсивности окислительных процессов, происходящих в организме человека. Внешним проявлением биохимических регулирующих процессов является мышечная дрожь, которая как уже говорились, возникает при переохлаждении организма. Повышает выделение теплоты до 125...200 Дж/с. В результате сложных химических реакций при усвоении пищи вырабатывается тепло, которое расходуется на поддержание жизненных процессов: работы сердца, органов дыхания.

Терморегуляция изменением интенсивности кровообращения заключается в способности организма регулировать объем подаваемой крови, которую в данном случае можно рассматривать как переносчик теплоты от внутренних органов к поверхности тела человека путем сужения или расширения кровеносных сосудов.

При высоких температурах окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает больше крови и, следовательно, больше теплоты отдается окружающей среде.

При низких температурах происходит обратное явление: кровеносные сосуды сужаются, количество крови, а, следовательно, и теплоты, подаваемой к коже, уменьшается, снижается ее температура и, как следствие, - уменьшение отдачи теплоты от человека окружающей среде.

Терморегуляция изменением интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения. Охлаждение организма за счет испарения имеет большое значение. Так, при температуре окружающей среды 36 °С отвод тепла от человека в окружающую среду осуществляется практически только за счет испарения пота. В регулировании процесса теплообмена участвуют одновременно все способы, но в большей или меньшей степени.

Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность труда имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах:

Qк+Qт=30%; Qиз-45

Qис=20% Qв=5%

Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом, и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными.

При незначительной напряженности системы терморегуляции и небольшой дискомфортностиустанавливаются допустимые метеорологические условия. При превышении допустимых значений метеорологических параметров система терморегуляции работает в напряженном режиме, человек испытывает сильный дискомфорт, нарушается тепловой баланс и начинается перегрев или переохлаждение организма в зависимости от того, в какую сторону нарушен тепловой баланс.

С точки зрения физики, человеческий организм представляет собой обычную незамкнутую термодинамическую систему. Поэтому для нормального самочувствия человека должен быть обеспечен тепловой баланс между его организмом и окружающей средой, т.е. интенсивность тепловыделения организма (от 85 Вт в состоянии покоя до 500 Вт при тяжёлой физической работе) должна быть равна интенсивности отдачи тепла во внешнюю среду. В противном случае будет иметь место переохлаждение, либо, наоборот, перегрев организма, чему сам организм до определённых пределов способен препятствовать.

Свойство организма человека поддерживать постоянную температуру тела называется терморегуляцией. Различают химическую и физическую терморегуляцию.

Химическая терморегуляция

Химическая терморегуляция заключается в изменении интенсивности усвоения пищи и обмена веществ. Она сопровождается как непосредственно повышением или понижением (в зависимости от температуры) уровня тепловыделения, так и созданием в организме запаса внутренней (химической) энергии, способной превратиться в тепло при совершении физической работы. Например, снижение температуры окружающего воздуха или тяжёлый физический труд сопровождаются ускорением усвоения пищи организмом и, в свою очередь, увеличением потребности в ней. В большинстве случаев простудные и другие заболевания, связанные с переохлаждением организма, возникают не потому, что человек был недостаточно тепло одет, а потому, что не успел вовремя пообедать.

Физическая терморегуляция

При физической терморегуляции изменяется интенсивность теплоотдачи во внешнюю среду. Различают ниже перечисленные механизмы физической терморегуляции.

1. Конвекция, т.е. передача тепла окружающему воздуху при непрерывном обновлении контактирующих с кожей его объёмов (как известно, нагрев воздуха сопровождается его расширением и перемещением более тёплых объёмов вверх). Следует подчеркнуть, что только конвективный тепломассоперенос обеспечивает охлаждение организма, ибо воздух является хорошим теплоизолятором. Интенсивность процесса зависит, главным образом, от температуры воздуха, а влиять на неё можно путём изменения скорости обновления контактирующих с телом объёмов воздуха: замедлить с помощью толстого шерстяного свитера или ускорить путём принудительного обдува. Последний пример показывает, что на интенсивность отдачи тепла влияет и скорость движения воздуха.

2. Тепловое (инфракрасное) излучение. Этот механизм охлаждения организма эффективен, когда температура тела заметно выше температуры окружающих предметов. Если последняя, наоборот, выше температуры тела, то получаемое организмом за счет излучения окружающих предметов количество теплоты окажется больше отдаваемого путём теплового излучения самого человеческого тела. Организм способен управлять интенсивностью отдачи тепла по первым двум механизмам за счёт расширения или сужения подкожных кровеносных сосудов.

3. Затрачивание тепла на испарение влаги (пота). При температуре воздуха и окружающих предметов выше температуры тела этот механизм остается единственным. Следует подчеркнуть, что охлаждение происходит не в результате выделения пота, а только при его испарении. Поэтому эффект возрастает при интенсификации испарения за счёт уменьшения относительной влажности, роста скорости воздуха, а также температуры. В горных районах на интенсивность испарения может влиять и понижение барометрического давления. Только благодаря испарительному механизму охлаждения, человек способен выживать при температурах выше 42°С (температура сворачивания белка в клетках коры головного мозга).

При температуре среды около 20°С теплоотдача составляет: путём конвекции — 31%, излучения — 43,7%, испарения — 21,7%. Остальное тепло расходуется на нагревание вдыхаемого воздуха, пищи, питья (приём горячей пищи и напитков приводит, наоборот, к уменьшению расхода тепла). В состоянии покоя человек отдаёт в среднем 2400 — 2700 кДж в сутки.

Следует отметить, что на интенсивность расхода тепла организмом может напрямую (за счёт теплопередачи) влиять и температура (а также теплопроводность) объектов, находящихся в непосредственном контакте с телом. Например, длительное нахождение на холодном и влажном полу (особенно в пропускающей влагу обуви) может привести к переохлаждению организма.
К параметрам микроклимата (метеоусловиям) относятся те параметры внешней среды, которые влияют на тепловой баланс организма. Они перечислены ниже.

1. Температура воздуха t, °C.

2. Относительная влажность воздуха φ = R/Rmax • 100%, где R - абсолютная влажность (парциальное давление водяных паров), мм.рт. ст.; Rmax - максимальная влажность (давление насыщенных водяных паров) при данной температуре, мм. рт. ст. Именно относительная (а не абсолютная) влажность воздуха определяет скорость испарения. Поэтому она и взята в качестве параметра микроклимата. Повышенная влажность (φ > 85%) затрудняет испарение пота, а слишком низкая (φ < 20%) вызывает пересыхание слизистых оболочек (глаза, дыхательные пути).

3. Скорость движения воздуха V, м/с. Минимальная скорость движения воздуха, ощущаемая человеком, составляет 0,2 м/с. Максимально допустимая скорость обдува работающих (воздушноедуширование в горячих цехах) – до 3,5 м/с.

4. Интенсивность теплового (инфракрасного) излучения W, Вт/м2 (в настоящей лабораторной работе не исследуется).

Одновременно с метеоусловиями принято рассматривать тесно связанное с ними барометрическое давление В. Однако само оно к параметрам микроклимата не относится: мы никак не можем выдерживать его в помещении вне зависимости от давления наружного воздуха. Соответственно, барометрическое давление не нормируется.

Для расчетов систем вентиляции и кондиционирования воздуха широко используется влагосодержание (само оно также не является параметром микроклимата)

d = 622 R/(B-R)


Измеряется влагосодержание в граммах водяного пара, приходящегося на 1кг сухого воздуха.

Метеоусловия, при которых терморегуляция легко обеспечивается организмом, считаются комфортными. Исходя из этого, осуществляют их нормирование. ГОСТ 12.1.005-88 (см. табл. П.2.1) устанавливает оптимальные (комфортные) диапазоны температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений (рабочей зоной считается пространство высотой до 2 м от уровня пола или площадки, на которых расположены рабочие места). Кроме того, стандартом установлены и более широкие допустимые диапазоны изменения температуры, различные для постоянных и непостоянных рабочих мест. Постоянным считается рабочее место, на котором работающий проводит свыше половины рабочего времени (в сумме) или свыше 2 часов непрерывно. При обслуживании производства попеременно в нескольких пунктах (работа многостаночников) постоянным рабочим местом является вся зона обслуживания.

При назначении оптимальных и допустимых диапазонов температуры, относительной влажности и скорости воздуха стандарт исходит, во-первых, из категории тяжести труда (для помещения в целом определяется категорией тяжести труда половины и более работающих). Все работы, проводимые на предприятиях, подразделяются по тяжести на три ниже перечисленные категории.

  • Категория I (легкая работа). Это работы точного машиностроения, приборостроения, а также конторские работы. Категория делится на две подкатегории:
    • Iа - суммарные затраты энергии до 120 ккал/час (139 Вт). Выполняются преимущественно сидя;
    • I6 - суммарные затраты энергии от 120 до 150 ккал/час (до 174 Вт). Выполняются преимущественно стоя.
  • Категория II (средней тяжести). Это работы, связанные с постоянной ходьбой, переноской небольших тяжестей (до 10 кг) и выполняемые стоя (основные процессы в механосборочных, сварочных цехах, в механизированном литейном, кузнечном, прокатном, термическом прои

Наши рекомендации