Свопинг, виртуальная память.
Виртуальная память.
Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части, называемые оверлеями. 0-ой оверлей начинал выполняться первым. Когда он заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами операционной системы. Однако разбиение программы на части и планирование их загрузки в оперативную память должен был осуществлять программист.
Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программы так, как будто в его распоряжении имеется однородная оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на одном или нескольких разнородных запоминающих устройствах, обычно на дисках, и при необходимости частями отображаются в реальную память.
Таким образом, виртуальная память - это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память; для этого виртуальная память решает следующие задачи:
1) Размещение данных в ЗУ разного типа
2) Выбор образов процессов или их частей для перемещения из памяти на диск и обратно
3) Перемещение, при необходимости, данных между памятью и диском
4) Преобразование виртуальных адресов в физические
Все эти действия выполняются автоматически, без участия программиста, то есть механизм виртуальной памяти является прозрачным по отношению к пользователю.
Виртуальная память выполняется на основе 2 подходов:
1) Свопинг – образы процессов выгружаются на диск и загружаются в память целиком.
Недостатки:
a. Неэффективность
b. Если адресное пространство больше свободной памяти, то свопинг не работает
2) Виртуальная память – между памятью и диском перемещаются какие-то части образов процессов.
ВП реализуется 3 способами:
1) Страничная ВП – данные между диском и памятью перемещаются страницами – частями фиксированного размера.
2) Сегментная ВП – перемещение данных осуществляется сегментами – т.е. частями произвольного размера с учетом смыслового значения данных
3) Сегментно–страничная ВП – комбинированный двухуровневый способ: виртуальное адресное пространство делится на сегменты, а сегменты на страницы, единица перемещения страница.
Для хранения сегментов и страниц на диске используется специальный файл – файл подкачки, swap, страничный файл (paging file).
Кэш-память.
Кэш-память, или просто кэш (cache), — это способ совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который за счет динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ позволяет, с одной стороны, уменьшить среднее время доступа к данным, а с другой стороны, экономить более дорогую быстродействующую память.
Неотъемлемым свойством кэш-памяти является ее прозрачность для программ и пользователей. Система не требует никакой внешней информации об интенсивности использования данных; ни пользователи, ни программы не принимают никакого участия в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.
Кэш-памятью, или кэшем, часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств — «быстрое» ЗУ.
Оно стоит дороже и, как правило, имеет сравнительно небольшой объем. «Медленное» ЗУ далее будем называть основной памятью, противопоставляя ее вспомогательной кэш-памяти.
Кэширование — это универсальный метод, пригодный для ускорения доступа к оперативной памяти, к диску и к другим видам запоминающих устройств. Если кэширование применяется для уменьшения среднего времени доступа к оперативной памяти, то в качестве кэша используют быстродействующую статическую память. Если кэширование используется системой ввода-вывода для ускорения доступа к данным, хранящимся на диске, то в этом случае роль кэш-памяти выполняют буферы в оперативной памяти, в которых оседают наиболее активно используемые данные.
Принцип действия кэш-памяти
Рассмотрим одну из возможных схем кэширования (рис. 5.25). Содержимое кэш-памяти представляет собой совокупность записей обо всех загруженных в нее элементах данных из основной памяти. Каждая запись об элементе данных включает в себя:
- значение элемента данных;
- адрес, который этот элемент данных имеет в основной памяти;
- дополнительную информацию, которая используется для реализации алгоритма замещения данных в кэше и обычно включает признак модификации и признак действительности данных.
При каждом обращении к основной памяти по физическому адресу просматривается содержимое кэш-памяти с целью определения, не находятся ли там нужные данные. Кэш-память не является адресуемой, поэтому поиск нужных данных осуществляется по содержимому — по взятому из запроса значению поля адреса в оперативной памяти. Далее возможен один из двух вариантов развития событий:
- если данные обнаруживаются в кэш-памяти, то есть произошло кэш-попадание (cache-hit), они считываются из нее и результат передается источнику запроса;
- если нужные данные отсутствуют в кэш-памяти, то есть произошел кэш-промах (cache-miss), они считываются из основной памяти, передаются источнику запроса и одновременно с этим копируются в кэш-память.
Интуитивно понятно, что эффективность кэширования зависит от вероятности попадания в кэш. Использование кэш-памяти имеет смысл только при высокой вероятности кэш-попадания.
Вероятность обнаружения данных в кэше зависит от разных факторов, таких, например, как объем кэша, объем кэшируемой памяти, алгоритм замещения данных в кэше, особенности выполняемой программы, время ее работы, уровень мультипрограммирования и других особенностей вычислительного процесса. Тем не менее в большинстве реализаций кэш-памяти процент кэш-попаданий оказывается весьма высоким — свыше 90 %. Такое высокое значение вероятности нахождения данных в кэш-памяти объясняется наличием у данных объективных свойств: пространственной и временной локальности.
- Временная локальность. Если произошло обращение по некоторому адресу, то следующее обращение по тому же адресу с большой вероятностью произойдет в ближайшее время.
- Пространственная локальность. Если произошло обращение по некоторому адресу, то с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам.