Поворот ветра по и против часовой стрелки

Наблюдая за направлением ветра, можно заметить, что он меняет направление при движении вдоль поверхности, с высотой и по времени.

Ветер может довернуть против часовой стрелки, как показано на рисунке 82. В северном полушарии это происходит в обычные дни, или после прохождения холодного фронта и, в конечном итоге, при приближении следующего фронта - обычно теплого.

поворот ветра по и против часовой стрелки - student2.ru

С другой стороны, ветер может изменить направление по часовой стрелке. Такое часто происходит непосредственно после прохода фронта.

ГРАДИЕНТ ВЕТРА

Из-за трения движущегося воздуха о землю, скорость ветра у поверхности меньше, чем на высоте. По той же причине изменяется и направление. Ветер на высоте совпадает с направлением изобар, а у земли пересекает их. Давайте представим себе модель распределения ветра по высоте.

Градиент ветра (можно сказать изменение) возле земли может быть изображен, как на рисунке 83. Это графическое представление скорости ветра от высоты можно назвать градиентным профилем ветра. В спокойных условиях (без термичности) над землей поток не турбулентен и наибольшее изменение скорости ветра происходит вблизи поверхности. Если местность пересеченная, нижний слой турбулизируется, увеличивается толщина пограничного слоя, то есть слоя, в котором изменяется скорость ветра.

поворот ветра по и против часовой стрелки - student2.ru

Вопросы ветрового градиента аналогичны хорошо известным в авиации проблемам пограничного слоя.

ВЫСОТНЫЕ ВЕТРЫ

Как мы выяснили в этой главе ранее, ветер на высоте более 500 - 1000 м над высшей точкой поверхности уже не подвержен влиянию трения о землю. На этих уровнях можно говорить о ветрах, дующих в свободной атмосфере и имеющих скорость свободного потока. Следовательно, на высоте более 500м над наивысшей точкой поверхности, мы находимся в зоне действия воздушных потоков, движущихся по изобарам и со скоростью, соответствующей градиенту давления на данной высоте. Ветер, направление которого, совпадает с изобарой вне пограничного слоя принято называть градиентным ветром.

На рисунке 84 мы видим изменение скорости и направления ветры с увеличением высоты. От поверхности до высоты 550м ветер доворачивает по часовой стрелке на 45° и усиливается с 10м/с до 20м/с.

Также на рисунке показаны ситуации, возникающие над ровной (водной) поверхностью и пересеченной. В первом случае, меньший поворот при меньшем уменьшении скорости. Во втором случае, большие изменения и направления, и скорости ветра. Поворот ветра с высотой важно учитывать пилотам при поиске термических потоков, планировании маршрута полета, экономии топлива или использования парящих участков горных склонов. Хотелось бы отметить, что нестабильные условия с термичностью имеют тенденцию отклонять потоки воздуха вверх и вниз и несколько уменьшают поворот ветра по сравнению со стабильными условиями. Также надо помнить, что очень удлинненные долины доворачивают ветер так, что он дует вдоль них. Этот эффект часто увеличивает разницу между направлением приземных потоков и потоков на высоте.

поворот ветра по и против часовой стрелки - student2.ru

Направление поворота ветра от поверхности до высоты свободного потока обычно по часовой стрелке в северном полушарии и против часовой в южном. Далее ветер опять поворачивает до направления более высоких ветров. В умеренном климате эти более высокие ветры обычно западные, за редким исключением, когда струйные потоки движутся к полюсу или изгибаются.

Лучший способ определить направление высотного ветра - это наблюдение за дрейфом облаков верхнего уровня, выбрав в качестве базы какой-нибудь неподвижный объект на земле. Зная направление ветра на большой высоте, в соответствии с полученной моделью, можно определиться с поворотом ветра с высотой. Обратив внимание на рисунки 58 и 68 в главе 4, где показаны высотные ветры в связи с барическими системами и фронтами, мы можем предположить направление при отсутствии нужных облаков. Отметим, что верховые ветры дуют почти всегда параллельно фронтам. Самое большое изменение направления ветра (180°) встречается в умеренных широтах при восточном ветре у поверхности. Все эти знания необходимы, когда работает высокая термичность, дрейфующая с ветром.

Характеристики высотного ветра зависят от места и расположения относительно него господствующих ветров на высоте и, особенно, струйных течений. Все это отображается на высотных картах погоды. При отсутствии таковых мы можем пользоваться основным правилом, которое гласит: ветер усиливается с высотой в теплом секторе антициклона и ослабляется в холодном секторе антициклона.

Мы должны понимать, что барические системы с высотой могут значительно отличаться от того что происходит у поверхности, а также, что в нижних слоях атмосферы возможно движение слоев воздуха над или под друг другом. Слои часто отличаются по температуре, влажности и характеристикам движения. Это может привести к изменению скорости и направления ветра через некоторое время. Чаще всего, ветер на высоте указывает, каким вскоре станет ветер у поверхности.

СТРУЙНЫЕ ТЕЧЕНИЯ

поворот ветра по и против часовой стрелки - student2.ru Ранее упоминалось о струйных течениях, которые являются составной частью погоды в умеренном климате, но любопытная вещь, о них ничего не было известно до начала полетов крупных самолетов на больших высотах во время второй мировой войны.

Известно несколько струйных течений. Одно из них, субтропическое, показано на рисунке 43. Его потоки расположены на высоте более 14 км, на широте 30° и являются более слабыми и короткими, чем течение, расположенное в умеренной зоне. Они оказывают малое влияние на спортивные полеты.

Полярное струйное течение расположено на границе холодного и теплого воздуха в умеренной зоне, как показано на рисунке 43. Оно представляет собой быстро движущийся поток воздуха с запада на восток (рис. 85). Скорость воздуха максимальна в центре и уменьшается к периферии.

Скорость потока в струйном течении увеличивается, когда оно отклоняется к полюсу и уменьшается, когда отклонение к экватору. Объяснение этому дается при описании рисунка 58. Полярное течение располагается на высоте около 10 км и может достигать скорости 350 км/ч над Северной Америкой и Европой и более 500 км/ч над Японией и Новой Зеландией, где условия для его формирования наиболее благоприятны.

Струйные течения возникают из-за сильных температурных контрастов между полярными и тропическими воздушными массами. Эти потоки образуются при движении по направлению к полюсам, но поворачивают вправо в северном полушарии и влево в южном, двигаясь с запада на восток. Зоны сильных горизонтальных температурных градиентов, фронты на поверхности и струйные течения чаще всего сопутствуют друг другу.

Важность полярного струйного течения для спортивных пилотов двойная. Во-первых, помогает движению фронтов и циклонов, как показано в предыдущей главе. Обнаружение его дает предупреждение о погоде. Во-вторых, это говорит о сильном ветре на высоте. Полеты под струйным течением не обязательно опасны, но надо быть готовым к возможности усиления в течение дня ветра и турбулентности из-за перемешивания воздушных масс.

Струйное течение бывает заметным визуально, потому что оно зачастую сопровождается довольно протяженными группами перистых облаков. Они движутся параллельно потоку, но могут пересекать его при отклонении последнего к югу или северу.

ДНЕВНОЕ ИЗМЕНЕНИЕ ВЕТРА

Изменение направления ветра в течение дня должно быть хорошо известно любому, кто проводит на природе достаточное количество времени. Мы знаем, что ветер обычно усиливается днем и утихает к вечеру. На рисунке 86 показано типичное изменение скорости ветра в течение суток. Отметим, что максимум показан вскоре после полудня, когда отмечается пик прогрева и термической активности; минимум в ранние часы, когда земля максимально остыла.

поворот ветра по и против часовой стрелки - student2.ru

поворот ветра по и против часовой стрелки - student2.ru Попробуем объяснить изменение направления и скорости ветра. В течение ночи нижний слой воздуха стабилен- земля отдает остатки тепла - имеет место слабое вертикальное перемещение. Следовательно, иногда даже сильный ветер ночью у поверхности либо слаб, либо отсутствует совсем. С другой стороны, солнечный прогрев днем является причиной движения воздуха вверх и вниз и приносит к поверхности скорости воздуха, присущие верхним слоям. В результате, усиление ветра у поверхности при прогреве. Рисунок 87 иллюстрирует эту модель. Типичный дневной цикл начинается со спокойных условий ранним утром, когда воздух постепенно приходит в движение по мере прогрева поверхности. Воздушные потоки будут усиливаться, предпочитая утреннее направление. Позднее термическая активность увеличивает обмен воздуха между различными слоями, и скорость ветра у поверхности увеличивается. После того, как солнечный прогрев начнет спадать, и термическая активность уменьшается, ветер у поверхности начинает утихать. Процесс этот может быть достаточно быстрым. Ветер продолжает утихать в течении ночи. Утром процесс повторяется. Часто бывают исключения из описанного сценария. Очень стабильные воздушные массы подавляют термическую активность, и ветер у поверхности может быть очень слабым или отсутствовать совсем. Жаркие гнетущие дни летом во влажных районах к этому предрасположены. Другое исключение возможно, когда на данной территории находится фронт. В этом случае, ветер может дуть весь день и всю ночь с очень малым изменением скорости.

СЛОИ ВОЗДУХА.

Воздух не всегда состоит из однообразной массы от поверхности до тропопаузы. Имеет смысл рассматривать воздух по слоям. Первым подтверждением такой возможности является холодный слой воздуха у поверхности ясными ночами. В горных районах холодные ветры, движущиеся у склонов, могут создавать слои. Отметим возможность движения верхнего слоя воздуха над более холодным, находящемся в долине, в горах. И, конечно, мы должны иметь представление о слое инверсии.

Все эти расслоения связаны с разностью температур. Важно отметить, что профиль ветра часто связан с температурным градиентом. Это происходит потому что воздушные массы, имеющие различную температуру, имеют различную плотность, а это не способствует их перемешиванию. В результате, мы часто находим теплые слои, скользящие по холодным или наоборот.

На рисунке 88 показаны некоторые профили ветра и соответствующие градиенты температуры. Эти профили могут изменяться ото дня к ночи или сохраняться в течение нескольких дней, если они результат прихода крупных воздушных масс: Отметим, что и турбулентность часто ассоциируется с движением двух соседних слоев. Турбулентность может создавать, собственную температурную инверсию, когда в результате нее более холодный воздух оказывается ниже более теплого. Более теплый воздух, являясь более влажным, поднимается и образует слой слоисто-кучевых облаков. Этот тип облаков указывает на слоистость воздуха и турбулентность в этом слое.

Пилоты воздушных шаров предпочитают летать либо рано утром, либо поздним вечером, когда нет сильных ветров у земли. Однако, на высоте ветер есть, и он обеспечивает дрейф шара. На разных высотах слои воздуха движутся в различных направлениях. Пилоты воздушных шаров используют это для полета в нужном направлении. Довольно часто опытные пилоты шаров могут привести шар и посадить его в месте старта, находя на различных высотах нужные потоки.

Наши рекомендации