Контактово-метасоматические процессы

При внедрении магмы вмещающие породы в первую очередь испытывают прогрев, причем наиболее сильно тогда, когда магма кристаллизуется и отдает максимальное количество тепла. Прогрев сам по себе способен стимулировать многие реакции во вмещающих породах, но особенно активно изменения протекают, если вмещающие породы резко отличны по химизму от магматического расплава и продуктов его кристаллизации. По законам термодинамики реакции будут протекать в направлении сглаживания различий химизма контактирующих сред, т. е. начнется обмен компонентами между магмой (а затем - магматической породой) и вмещающей породой. Так как вмещающая порода при этом остается в твердом состоянии, то такой обмен возможен лишь путем метасоматоза - реакций замещения. Поскольку они идут на контакте двух сред, такие процессы и названы контактово-метасоматическими. Мы остановимся на характеристике двух из них – фенитизации и скарнообразовании.

Фенитизация

Название происходит от местности Фен в Скандинавии, где этот процесс был впервые изучен. При внедрении щелочной магмы в силикатные и алюмосиликатные породы (гнейсы, граниты, песчаники, габброиды, амфиболиты) происходит вынос из кристаллизующегося расплава большого количества щелочей - K2O и Na2O, которые активно воздействуют на вмещающие породы, изменяя их. Это изменение идет тем интенсивнее, чем сильнее отличаются вмещающие породы от внедрившейся магмы по составу. И особенно, если сами вмещающие породы неоднородны и контрастируют между собой по химизму (тогда и между ними тоже начинают идти реакции).

В результате такого воздействия магмы на вмещающие породы вокруг массива щелочных пород возникает ореол контактово-метасоматических пород, которые и получили название фениты. Этот ореол обычно имеет зональное строение, так как температура и степень метасоматического замещения по мере удаления от контакта во вмещающие породы меняются (рис. 16).

Так, вблизи контакта со щелочным интрузивом, где прогрев наиболее сильный, а количество поступающих щелочей максимально, первона­чальные минералы вмещающих пород полнос­тью замещаются новообразованными, среди которых будут щелочные минералы, характерные для самой магматической щелочной породы: недосыщенный кремнеземом нефелин, щелочной пироксен - эгирин, калишпат (ортоклаз). Чуть дальше от контакта образуются эгирин-авгит или диопсид, альбит и тонкоигольчатый эгирин.

На большем удалении от контакта, во второй зоне, уменьшается количество новообразованных минералов (в первую очередь - нефелина) и сохраняются реликты первичных минералов вмещающих пород.




Еще дальше от контакта самые щелочные из новых минералов уже не образуются, количество незамещенных первичных минералов возрастет, а затем по мере удаления от контакта вынос щелочей будет фиксироваться только по вновь образованному альбиту. В конце концов, можно проследить весь переход вплоть до исходных вмещающих пород, на которых воздействие щелочного массива уже никак не отразилось.

Температура фенитизации вблизи контакта достигает 1200–1000 оС, то есть такая же высокая, как температура кристаллизации щелочной магмы.

Чем фениты обратили на себя внимание? Тем, что нередко вместе со щелочами во вмещающие породы выносятся Nb, Ta, TR, Zr, Hf - те элементы, которыми щелочные магмы богаты; и в фенитах они нередко дают скопления таких минералов, как пирохлор (Nb, Ta, TR, U, Th), циркон (Zr + Hf), бастнезит (TR), и в этом случае фениты становятся ценной рудой. Типичными примерами фенитов являются контактово-метасоматические ореолы вокруг щелочных массивов Хибин, Вишневых Гор (Урал), Сибири.

1.1.4.3.2. Скарнообразование

Скарны - это породы, которые образуются метасоматическим путем на контакте карбонатных вмещающих пород с магматическими, чаще всего кислыми, гранитоидными породами.

Следует отметить, что скарны и скарноподобные породы могут возникать и при внедрении ультраосновных, основных, щелочных магм, и даже на контакте карбонатных и немагматических силикатных толщ, но все-таки наиболее типичны случаи внедрения в карбонатные породы гранитоидных магм, поскольку именно тогда проявляется контрастность контактирующих сред по химизму, а значит, наиболее активно идет обмен компонентами. Такой обмен вызывает изменение минерального состава пород и в приконтактовой части гранитного массива (эндоскарны), и особенно - в приконтактовой части со стороны вмещающих пород (экзоскарны) (рис. 17). Поскольку он происходит путем замещения обеих пород, то к нему приложим термин биметасоматоз (предложен Д. С. Коржинским). Считают, что скарны образуются на глубине 3–7 км и образованию их способствует возникновение трещин контракции (усадки объема при остывании магматических пород).

В зависимости от состава вмещающих карбонатных толщ образуются скарны двух типов - магнезиальные и известковые.

1. Магнезиальные скарны образуются на контакте с магнезиальными карбонатными толщами - доломитами, доломитовыми мраморами - CaMg(CO3)2. Поэтому для них характерна ассоциация минералов, богатых магнием, или двойных солей Са и Mg:

форстерит Fo Mg2[SiO4],

флогопит Phl KMg3[AlSi3O10](OH,F)2,

шпинель Sp MgAl2O4,

диопсид Di CaMg[Si2O6],

энстатит En Mg2[Si2O6],

минералы группы хондродита-гумита -

Mg2[SiO4]×Mg(F,OH)2-4Mg2[SiO4]×Mg(F,OH)2,

тремолит Trem Ca2Mg5[Si4O11]2(OH)2,

иногда -

магнезиальный турмалин NaMg3Al6[Si6O18](BO3)3(OH,F)3+1.

2. Известковые (известковистые) скарны образуются на контакте с мраморизованными известняками и мраморами, поэтому здесь преобладают кальциевые силикаты:

волластонит Voll Ca3[Si3O9],

гроссуляр-андрадит Gross-Andr Ca3Al2[SiO4]3 - Ca3Fe2[SiO4]3,

диопсид-геденбергит Di-Häd CaMg[Si2O6] - CaFe[Si2O6],

везувиан Ves Ca10(Mg,Fe)2Al4[SiO4][Si2O7]2(OH,F)4,

эпидот Ep Ca2FeAl2[SiO4][Si2O7]О(OH),

тремолит Trem Ca2Mg5[Si4O11]2(OH)2.

Температура скарнообразования различна: для магнезиальных - 850–650 оС, известковых - 800–400 оС. Непосредственно у контакта при максимальном прогреве температура может подниматься до 1000 оС.

По мере остывания зоны контакта, вследствие контракции скарнированных пород, развивается трещиноватость, и в трещины начинают поступать сначала пневматолитово-гидротермальные, а затем – гидротермальные растворы, которые отделяются при кристаллизации магматических пород. Растворы активно изменяют более ранние скарновые минералы, поэтому в образовании скарнов различают собственно скарновый этап (подразделяемый на раннескарновый и позднескарновый) и этап более поздних наложений, главным образом гидротермальных. Эти наложения приводят не только к
перекристаллизации скарновых минералов и замещению раннескарновых минералов позднескарновыми, но и к отложению в скарнах гидротермальных минералов, компоненты которых приносятся растворами из магматического очага. Среди них такие очень важные в промышленном отношении, как шеелит Ca[WO4], молибденит MoS2, минералы Be, Sn, Fe, Co, Pb + Zn, Cu, самородное Au.

По характеру рудной специализации среди скарнов выделяют железорудные скарны (магнетитовые) – г. Магнитная, Высокая, Благодать, Верблюжка (Урал), Соколово-Сарбайское м-е (Тургайский прогиб), скарны Горной Шории; меднорудные скарны (с халькопиритом, борнитом, халькозином) – Хакасия; вольфрамоносные скарны (с шеелитом) – Майхура, Чорух-Дайрон, Лянгар и др. (Средняя Азия), Тырныауз (Кавказ); скарны с полиметаллическим оруденением (сфалеритом, галенитом) – Тетюхе или Дальнегорское (Приморье); скарны с кобальтовым оруденением (кобальтином) – Дашкесан (Азербайджан); золоторудные скарны – Горная Шория и Алтай; бороносные скарны (с людвигитом (Mg,Fe)2Fe[BO3]O2) – Якутия, Горная Шория.

Гидротермальные процессы

Как видно из характеристики магматогенных процессов, все они заканчиваются проявлением гидротермальной деятельности, т. е. минералообразованием, связанным с действием нагретых вод. Тем самым уже устанавливается один из источников гидротермальных растворов - магматический расплав, который может содержать растворенную воду в значительных количествах. Как правило, наиболее богаты водой кислые магмы, тогда как основные и ультраосновные магмы являются более «сухими». Гидротермальные растворы обособляются по мере снижения температуры в ходе кристаллизации магм на последних этапах формирования магматических пород (магматогенные воды). Однако это не единственный источник гидротермальных растворов, исследования вулканических областей и изотопная геохимия показали, что существенную роль в их формировании могут играть метеорные воды - поверхностные воды, просачивающиеся на глубину, где они нагреваются за счет тепла магматических масс и могут дать начало гидротермальным растворам. Значительное количество воды высвобождается при обезвоживании осадочных и других пород при погружении их на глубину в ходе метаморфических процессов (метаморфогенные воды). Иногда воды корового происхождения называют вадозными, чтобы противопоставить их глубинным, ювенильным, однако термин «вадозные» часто используют и как синоним метеорных вод. Между ювенильными, метеорными и метаморфогенными водами может происходить
смешивание. Так как источники гидротермальных растворов различны, то и гидротермы будут иметь различный состав.

Магматогенные воды, богатые растворенными летучими компонентами магмы (HCl, HF), изначально определяют кислый, с низким рН, характер глубинных гидротерм. При прохождении таких растворов через породы за счет реакции с этими породами состав и кислотность растворов будут меняться. Из магматического очага они заимствуют элементы, не вошедшие в породообразующие минералы, - в первую очередь тяжелые, рудные элементы - W, Mo, Sn, Be, U, Cu, Zn, Pb, Au, Ag, Bi и др.

Состав гидротерм, формирующихся за счет метеорных вод, будет полностью определяться составом пород, через которые эти воды фильтруются. Однако это не означает, что метеорные воды изначально стерильны. Дождевые воды приносят на землю взвешенные в атмосфере вещества. Так, в связи с антропогенным воздействием на окружающую среду ежегодно на поверхность оседает количество ртути, соизмеримое с годовой мировой добычей.

В целом, сведения о химизме гидротермальных растворов мы черпаем, изучая продукты гидротермальной деятельности. Это изучение показало, что гидротермами хорошо переносится кремнезем (кварц, халцедон - типичные минералы гидротермальных образований) и очень плохо - глинозем, поскольку алюмосиликаты и силикаты алюминия среди гидротермальных минералов не характерны. Из катионов в продуктах гидротермальной деятельности мы видим: Cu, Pb, Zn, Hg, Au, Fe, Co, Ni, As, Sb, Bi, а также Sn, W, Mo, U, иногда Mn. Кроме того, характерны щелочные и щелочноземельные элементы (Na, K, Ca, Mg, Ba), причем о важной роли некоторых из них в гидротермальном процессе мы узнаем лишь по косвенным данным, исследуя включения минералообразующих растворов в минералах, поскольку эти элементы сами дают легкорастворимые соединения.

Уже указывалось, что по мере продвижения гидротерм меняется их кислотность. Не остаются неизменными и другие параметры. В частности, меняется окислительно-восстановительный потенциал (Eh) за счет увеличения содержания О2 по мере продвижения растворов к поверхности. Это ведет к окислению аниона S2- до SO42- и появлению кроме сульфидов еще и сульфатов, например, барита Ba[SO4], который становится в некоторых гидротермальных образованиях главным нерудным минералом.

Очень важным для гидротермального минералообразования является вопрос о формах переноса рудных элементов в растворах. Большинство из них дает слаборастворимые в истинных растворах соединения, что привело
к представлениям о переносе в виде комплексных соединений, растворимость которых значительно выше, либо об образовании рудных минералов из коллоидных растворов. Кроме того, повышение Т и Р значительно увеличивает растворимость некоторых минералов и делает возможным их перенос в виде прямых ионных растворов. В пользу того или иного способа переноса накоплен большой фактический и экспериментальный материал. Так, перенос Au может осуществляться в виде хлоридных или сложных полисульфидных комплексов. Наблюдения современного гидротермального минералообразования в вулканических областях показывают, что из коллоидных растворов могут образовываться силикатно-сульфидные руды, содержащие Cu, Fe, As, Sb, Pb, Mn.

Каковы причины отложения минералов из гидротермальных растворов? Прежде всего, следует остановиться на роли температуры и давления. Верхний предел температуры гидротермальных растворов определяется критической температурой воды и водных растворов: 375–400 оС. Очевидно, что постепенное снижение температуры, влияя на растворимость, приводит к минералообразованию. Так, даже в пределах одной гидротермальной жилы разновозрастные минералы могут иметь разную температуру образования. Нижним пределом, очевидно, являются близповерхностные процессы с участием водных растворов, часто называемых вадозными.

Давление может изменяться от одной атмосферы до полутора тысяч атмосфер и более, в пределе соответствуя литостатическому давлению. Долгое время считалось, что глубже 4,5–5 км резко снижается пористость пород и уменьшается возможность циркуляции растворов. Однако обнаружение продуктов гидротермальной деятельности на гораздо больших глубинах (Кольская сверхглубокая скважина - 13 км) заставило расширить диапазон давлений для гидротермального минералообразования. Снижение давления нередко является более важной причиной минералообразования, чем снижение температуры, поскольку может происходить гораздо быстрее. Например, присутствие при высоком давлении растворенной углекислоты приводит к образованию легкорастворимого Ca(HCO3)2, но если вследствие тектонических подвижек произойдет приоткрытие трещин и практически мгновенный сброс давления, то растворенная СО2 улетучится («вскипание» раствора), произойдет отложение кальцита:

Ca(HCO3)2 ® Ca[CO3]¯ + CO2­ + H2O.

Еще одним важным фактором является изменение кислотности растворов по мере взаимодействия с породами, через которые они движутся. Например, в зависимости от кислотности раствора будут образовываться пирит или марказит, при нейтрализации растворов бутут осаждаться карбонаты.

Мы уже отметили роль Eh в изменении состава растворов, он же может служить и причиной отложения. Следует добавить лишь, что обычно все факторы связаны между собой, и речь может идти только о преобладающем влиянии какого-либо из них.

Следующий вопрос - формы отложения. Наиболее характерные формы гидротермального минералообразования - это жилы. Гидротермальные жилы образуются двояко:

1) путем заполнения открытых трещин отлагающимися из раствора минералами. В этом случае идет последовательное нарастание минерального вещества на стенки трещины и рост от стенок внутрь. Такое отложение называется секреционным (рис. 18). При этом могут возникать полосчатые жилы, когда образование одних минералов сменяется во времени отложением других. Если нарастарние идет вокруг обломков породы, попавших в трещину, образуются так называемые крустификационные жилы (crust - кора, корка). При многократном дроблении вмещающих пород и образовавшегося жильного материала и последующем новом отложении минералов возникают брекчиевидные жилы.

В строении жил различают осевую часть и зальбанды (боковые части), иногда этим термином обозначают поверхность контакта жилы и вмещающей породы или даже прилегающую к контакту часть вмещающих пород.
Для пологопадающих жил различают также лежачий и висячий бока жилы (рис. 18 а);

2) при метасоматическом образовании гидротермальных жил растворы, просачиваясь вдоль тонких, часто капиллярных, трещин, взаимодействуют с минералами вмещающих пород, растворяют, разъедают их (резорбция) и на их месте отлагают другие минералы. Вся зона вдоль трещины, захваченная такой переработкой гидротермальными растворами, может образовать жилу, в которой рост минералов будет происходить от трещины (т. е. осевой части жилы) в сторону вмещающей породы. Если жилы с секреционным типом заполнения имеют, как правило, резкие контакты с вмещающими породами, то жилы метасоматические - обычно неровные, контакты часто неотчетливые, связанные с перекристаллизацией окружающих пород (рис. 18 б). При этом, состав метасоматических жил часто меняется при переходе из одной вмещающей породы в другую. Например, в кварцевых жилах медного месторождения Бьют (США) меднорудные минералы отлагаются только в тех участках, которые залегают в гранитах, а участки, пересекающие аплитовые зоны, сложены просто кварцем.

Еще одной формой гидротермальной минерализации являются залежи. Они возникают при просачивании растворов или диффузии вещества через породы, при этом минералообразование может идти путем отложения в порах, а также за счет реакции с вмещающими породами. Морфология таких залежей весьма разнообразна, размеры различны. Наиболее крупные размеры (до 500 м) имеют меднорудные гидротермально-ме­та­со­ма­тические залежи.

В зависимости от условий минералообразования и типа минерализации гид­ро­термальные жилы под­раз­деляют на несколько групп. Прежде всего, пред­ставляется естественным поделить жилы по температурам образования. Еще А. Эммонс выде­лил высокотемператур­ные (гипо­термальные) – 300–400 оС, среднетемпературные (мезотермальные) – 150–350 оС, низкотемпературные (эпитермальные) жилы – ниже 200 оС. Это же подразделение берется за основу и теперь, однако во внимание принимаются источники растворов и область минералообразования. Поэтому все гидротермальное минералообразование делят на 1) плутоногенное, 2) вулканогенное и 3) телетермальное.

1. Плутоногенный тип. Гидротермы связаны с глубинными магматическими очагами, с их кристаллизацией на глубине и с функционированием и разгрузкой растворов тоже на глубине, часто неподалеку от материнской интрузии (плутона). Они формируют преимущественно высоко- и среднетемпературную гидротермальную минерализацию (рис. 19).

К этому типу относятся высокотемпературные кварцевые жилы, пространственно и генетически тесно связанные с грейзенами и имеющие аналогичную минерализацию: касситерит, вольфрамит, молибденит, берилл, висмутин. Из нерудных минералов основным является жильный кварц, обычен флюорит, иногда - топаз, в зальбандах жил часто присутствуют мусковит, калишпат.

К среднетемпературной плутоногенной относится минерализация «пятиметальной формации» - карбонатные и кварц-карбонатные жилы с минералами Ag, Co, Ni, Bi, U (Рудные Горы в Чехии и Германии). К ней же принадлежит минерализация «урезанных», т. е. неполных аналогов - Co-Ni-арсенидной формации (Хову-Аксы, Тува), Ag-Co-Ni формации (Кобальт, Онтарио, Канада). Среднетемпературными являются многочисленные полиметаллические (Zn, Pb, Cu, часто с Ag) месторождения (Рудный Алтай, Забайкалье, Северный Кавказ) и полиметаллическая минерализация, наложенная в гидротермальную стадию на скарны – Тетюхе (Дальнегорск), Приморье. К средне-высокотемпературным относятся золото-кварцевые месторождения Якутии, Северо-Востока России.

2. Вулканогенные гидротермальные ассоциации минералов формируются за счет гидротерм, связанных с близповерхностными магматическими очагами, нередко имеющими выход на поверхность (вулканы). Существенная роль в формировании таких гидротерм принадлежит метеорным водам. Минералообразование идет в близповерхностных условиях, т. е. при быстром снижении температуры, частых тектонических подвижках, способствующих сбросу давления. Это заметно сказывается на морфологии образующихся минералов - характерны мелкозернистые до колломорфных агрегаты, частое образование халцедона или халцедоновидного кварца, пространственное совмещение как высокотемпературных (касситерит, вольфрамит), так и низкотемпературных минералов. В целом, однако, преобладает низкотемпературная минерализация, и лишь некоторые месторождения относятся к высоко-среднетемпературным.

Особый случай представляют колчеданные залежи субмаринного характера, источником рудного вещества которых является вулканический материал (пепел, газы), отлагающийся на дне морей вблизи действующих вулканов или выносимый при подводных извержениях. В дальнейшим рудное вещество перераспределяется под воздействием низкотемпературных растворов, циркулирующих в таких вулканогенно-осадочных толщах.

Примеры вулканогенных гидротермальных образований:

а) кварц-халцедоновые жилы с золотом (Балей, Забайкалье);

б) оловоносные и олово-висмутовые жилы, иногда с колломорфным касси­теритом - деревянистым оловом (Приморье; Хинган);

в) медно-порфировое оруденение в кварцевых порфирах или близповерхностных гранитах (Сорское месторождение, Хакасия);

г) колчеданные залежи субмаринного характера, иногда с золотосодержащим пиритом (Урал);

д) антимонит-вольфрамитовые (ферберитовые) жилы (Зопхито, Северный Кавказ);

е) кратерно-озерные отложения серы с реальгаром, аурипигментом.

Среди перечисленных типы в и д образуются при повышенных (т. е. средних) температурах.

3. Телетермальные гидротермальные образования не имеют видимой связи с магматизмом. Принято считать, что это растворы, далеко («теле-») ушедшие от своего непосредственного источника. Такая минерализация нередко приурочена к зонам глубинных разломов, в которых также локализуются мелкие магматические тела, создавая впечатление генетической связи. Однако частое образование без всякой приуроченности к магматическим породам, локализация в очень разных по химизму и литологии породах свидетельствуют, что связь эта - лишь кажущаяся. Обычно такие жилы просты по химическому составу. К этому типу относятся месторождения Hg, Sb, As - киноварные (ртутные), антимонит-киноварные (сурьмяно-ртутные), такие, как Хайдаркан, Кадамджай (Средняя Азия), Акташ (Горный Алтай), Терлиг-Хая (Тува), Никитовское (Украина).

По температурам образования телетермальные ассоциации низкотемпературные, о чем свидетельствует одновременное с рудными минералами образование халцедоновидного кварца.

Гидротермальное минералообразование обычно сопровождается интенсивным изменением вмещающих пород - это так называемое околожильное или околорудное изменение. Характерно, что масштаб такого изменения часто намного превышает мощность самих жил. Это позволяет использовать измененные породы (метасоматиты) в качестве поискового признака на те или иные гидротермальные ассоциации. Сейчас, когда все выходящие на поверхность месторождения уже найдены, по околорудным изменениям ведется поиск так называемых «слепых» тел. Перечислим основные типы гидротермальных мета­соматитов.

1. Вторичные кварциты. Если богатые летучими (HF, SO2, HCl) кислые растворы взаимодействуют с алюмосиликатными породами в близповерхностных условиях, происходит вынос щелочей, кальция и других компонентов этих пород, а на месте остаются лишь самые инертные из них - кремнезем, глинозем, окись титана. Так на месте кислых эффузивов возникают вторичные кварциты – близпроверхностные аналоги грейзенов. Они имеют зональное строение, и в наиболее «проработанных» участках образуются корунд, диаспор (за счет избытка глинозема при выносе остальных компонентов). Затем образуется зона андалузита (или силлиманита), которая сменяется обогащенными кварцем породами, напоминающими обычные кварциты. В наименее прогретых участках изменения образуются каолинит, пирофиллит, серицит, алунит. Именно таким образом сформировалось месторождение агальматолита - поделочного пирофиллита Al2[Si4O10](OH)2 в Туве.

2. Серицитизация. Другим аналогом грейзенизации является низкотемпературное образование мелкочешуйчатого мусковита - серицита («серикос» - шелковистый) во вмещающих породах вокруг гидротермальных жил. Серицитизация идет в том случае, когда температуры недостаточны для возникновения грейзенов (обычно при большом удалении растворов от материнской интрузии). Мусковит (серицит) при этом образуется за счет алюмосиликатов вмещающих пород, прежде всего, полевых шпатов.

3. Эпидотизация. Это низкотемпературное гидротермальное изменение, сопровождающее тектонические зоны в силикатных породах, богатых Са, необходимым для образования эпидота Ca2FeAl2[SiO4][Si2O7]O(OH). Измененные в ходе этого процесса породы приобретают характерный для эпидота зеленоватый оттенок, а иногда получаются породы, почти полностью состоящие из мелкозернистого эпидота, - эпидозиты. Эпидотизация широко распространена при изменении плагиоклаза основных магматических пород.

4. Березитизация. Гидротермальное изменение алюмосиликатных пород, при котором образуется ассоциация серицит + кварц + пирит + карбонат (анкерит). Этот процесс нередко сопровождает гидротермальные месторождения золота и назван по Березовскому месторождению на Урале. Пирит в этом случае также бывает золотосодержащим. Иногда березитизация является поисковым признаком на вольфрамовое, молибденовое и медное оруденение.

5. Лиственитизация. Гидротермальное низкотемпературное изменение ультраосновных пород, при котором образуются кварц-карбонатные метасоматиты с ярко-зеленой хромсодержащей слюдой - фукситом, с примесью рудных минералов - пирита и гематита. Нередко листвениты сопровождают гидротермальное золотое оруденение.

6. Хлоритизация. Чрезвычайно широко распространенное гид­ро­тер­маль­ное изменение пород, сопровождающее многие низкотемпературные гидротермальные жилы. Хлорит при этом легко образуется за счет
биотита.

7.Серпентинизация, оталькование - гидротермальное изменение ультраосновных пород. Может быть автометаморфическим, а может протекать и при воздействии «чужих» гидротермальных растворов, связанных с более поздними, обычно кислыми, интрузиями.

8. Пропилитизация - сложный комплекс гидротермальных изменений вулканических пород в областях активного вулканизма, связанный с изменением гидротермальных растворов от кислых до щелочных. Главные минералы пропилитов - альбит, хлорит, кальцит, пирит, кварц; обычны - пренит, эпидот, актинолит, серицит, адуляр, цеолиты. После пропилитизации часто образуются секущие кварцевые жилы или зоны окварцевания, сопровождающиеся кварц-пирит-серицитовыми и другими метасоматитами. Наблюдаются переходы от пропилитов к вторичным кварцитам.

Кроме перечисленных, отметим еще такие низкотемпературные гидротермальные изменения, как карбонатизация, окремнение, каолинизация (аргиллизация), алунитизация - все это процессы, не требующие объяснений. Значение гидротермальных метасоматитов не исчерпывается их использованием в качестве поисковых признаков. Нередко они сами являются нерудными полезными ископаемыми - каолиниты (сырье для фарфоровой промышленности), месторождения талька и серпентина, пирофиллита.

В целом роль гидротермальной минерализации огромна, месторождения гидротермального генезиса дают до 70 % мировой добычи Mo, W, Sn, 50 % меди.

Метаморфические процессы

Принято различать космогенный (ударный) метаморфизм, который характерен для метеоритных кратеров, и эндогенный, подразделяющийся в свою очередь на региональный и контактовый.

Региональный метаморфизм

При погружении продуктов экзогенного и эндогенного минералообразования на глубину, в область повышенных давлений и температур, происходит изменение этих пород, изменение их минерального состава и структуры - приспособление к новым условиям. Такой процесс называют региональным метаморфизмом, поскольку он захватывает целые регионы земной коры. Факторы, определяющие степень метаморфизма, – температура, давление, присутствие летучих. Очевидно, верхний предел регионального метаморфизма - это температуры плавления, образования магматического расплава, т. е. около 700–1000 оС (в зависимости от состава пород и их насыщенности водой).

Давления при региональном метаморфизме могут быть весьма различными, достигая десятков тысяч атмосфер (десятков килобар) на глубине и в зонах глубинных разломов (в условиях стресса). Каковы общие тенденции минералообразования при региональном метаморфизме? Это:

1) образование все более плотных минералов с увеличением давления;

2) последовательное уменьшение роли воды (и углекислоты) в минералах с ростом температуры.

По степени интенсивности весь процесс метаморфизма может быть разделен на РТ-области, которым будут соответствовать свои определенные минеральные ассоциации. Этим стадиям с их характерными минеральными ассоциациями отвечают фации метаморфизма. Более грубо их разделяют на фации низкой, средней и высокой ступеней метаморфизма.

Метаморфические фации называются по характерным минералам, либо характерному облику пород, возникающих при метаморфизме алюмосиликатных осадочных пород (рис. 20). Как видно из рисунка, выделяются области метаморфизма при нормальных (левая часть диаграммы) и повышенных давлениях (правая часть - поля эклогитов и дистен-глаукофан-содержащих пород).

Кроме того, продукты регионального метаморфизма будут отличаться в зависимости от исходного состава пород. Рассмотрим случаи, отличные от обычных алюмосиликатных пород.

1. При региональном метаморфизме карбонатных пород (известняков) будут возникать мраморы. Если же исходные карбонатные породы кроме кальцита содержали доломит (магнезиальные карбонатные породы), а также прослои и линзы песка, глинистых осадков, то при региональном метаморфизме высокой ступени за счет таких пород возникнут кальцифиры - породы, состоящие из кальцита и магнезиальных минералов, аналогичные по ассоциации магнезиальным скарнам. В отличие от последних, в кальцифирах форстерит, диопсид, флогопит обычно равномерно распределены в виде зерен среди кальцита или иногда образуют полосы (на месте бывших силикатных прослоев или доломитов).

2. При метаморфизме осадочных толщ, богатых гидроксидами железа и кремнеземом, образуются железистые кварциты(джеспилиты) – тонкослоистые породы, состоящие в основном из магнетита, гематита и кварца. С ними иногда встречается щелочной амфибол – рибекит, и некоторые железистые силикаты - ферросилит, фаялит. Такие образования характерны для высокой ступени метаморфизма и на всем земном шаре приурочены к докембрийским образованиям. В России это руды Курской Магнитной Аномалии, на Украине – Кривой Рог, в США - месторождения Верх­него Озера.

3. При метаморфизме высокоглиноземистых осадков (бокситов, древних кор выветривания латеритного типа) возникают высокоглиноземистые продукты метаморфизма - андалузит-кианитовые сланцы (иногда с диаспором), силлиманитовые сланцы, а также корундсодержащие породы (за счет бокситов) с примесью хлоритоида.

 
 

4. При метаморфизме древних россыпей могут образоваться месторождения типа Витватерсранд (ЮАР) - с уранинитом, самородным золотом (метаморфизованные золотоносные конгломераты).

5. При метаморфизме продуктов разложения растительных остатков могут образовываться каменные угли, антрациты, шунгиты, переходящие затем в графит.

Особо следует остановиться на жилах альпийского типа - специфических продуктах регионального метаморфизма. Эти жилы были впервые исследованы в метаморфических комплексах Альп, откуда и получили свое название. При метаморфизме происходит дегидратация минералов (разложение минералов, содержащих воду). Такая вода накапливается в метаморфической толще и начинает передвигаться в ней в виде поровых растворов. Если на пути встречается трещина или полость, эти растворы начинают переотлагать в них вещество, растворенное при просачивании через окружающие породы. Так образуются жилы, особенностью которых является, во-первых, друзовое строение - отложение идет на стенках трещин, и, во-вторых, тесная связь их минерального состава с составом вмещающих толщ. В таких жилах часто встречаются прекрасные кристаллы горного хрусталя, иногда с включениями игольчатых кристаллов рутила (так называемые «волосы Венеры»), кристаллы адуляра, сфена, апатита, гематита, рутила, брукита, цеолитов, таблитчатые кристаллы хлорита.

В региональном метаморфизме выделяют прогрессивный метаморфизм, идущий с повышением температуры и давления, и регрессивный (ретроградный) метаморфизм, протекающий при уменьшении этих параметров. Если регрессивный метаморфизм оторван во времени от предыдущего этапа, его называют также диафторезом, при этом в минералообразовании таких менее метаморфизованных пород обязательно принимает участие вода, выделившаяся на прогрессивной стадии метаморфизма. Если она из системы по каким-то причинам удалена и нет другого источника летучих, то диафторез протекать не будет.

Контактовый метаморфизм

Говоря о контактовом метаморфизме, отметим, что в отличие от контактово-метасоматических образований главным фактором минералообразования здесь является повышение температуры. Как показывает название, контактово-метаморфические породы появляются на контакте магматических внедрений в осадочные (или метаморфизованные осадочные) породы. Чисто метаморфическое изменение характерно для пород, мало отличных от магматических по химизму, вследствие чего и нет обмена компонентами - нет метасоматоза. Возникают породы - роговики, названные так за плотное сложение с оскольчато-раковистым изломом, аналогичным излому рога. По минеральным ассоциациям роговики могут соответствовать регионально-мета­мор­фическим породам, образовавшимся при низком давлении. Так, наиболее характерны биотитовые роговики, соответствующие биотитовым сланцам, кордиеритовые и биотит-андалузитовые роговики - аналоги соответствующих сланцев. Наиболее низкотемпературны - мусковитовые роговики, при средних температурах образуются амфиболовые роговики. При более сильном прогреве в роговиках появляются пироксены, характерные для высоких ступеней регионального метаморфизма.

Для самых высокотемпературных пород контактового метаморфизма характерны спуррит и мервинит - показатели высокой температуры и низкого давления, которые образуются по карбонатным и силикатно-карбонатным породам.

Особо отметим, что при контактовом метаморфизме высокоглиноземистых пород, так же как и при региональном, могут образовываться
наждаки.

В заключение рассмотрения метаморфических процессов следует отметить все чаще описываемые явления дислокационного метаморфизма. Такие процессы протекают в зонах глубинных разломов в условиях локального понижения или повышения давлений при тектонических подвижках. Наиболее распространен этот процесс в зонах субдукции, когда при погружении одной плиты под другую возникают значительные области повышенного давления при низких температурах, а также

Наши рекомендации