Принципы классификации белков. Классы, общая характеристика. Основные отличия между альбуминами и глобулинами, протаминами и гистонами.

По составу белки можно разделить на простые и сложные, первые содержат в молекуле только аминокислоты, вторые — еще и другие структуры (добавоч­ные или простетические группы).

Простые белки по растворимости и пространственному строению разделя­ют на глобулярные и фибриллярные.

Глобулярные белки отличаются шарообразной формой молекулы (эллипсо­ид вращения), растворимы в воде и в разбавленных солевых растворах. Хорошая растворимость объясняется локализацией на поверхности глобулы заряженных аминокислотных остатков, окруженных гидратной оболочкой, что обеспечивает хороший контакт с растворителем. К этой группе относятся все ферменты и большинство других биологически активных белков, исключая структурные.

Среди глобулярных белков можно выделить'

1) альбумины — растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония;

2) полифункциональные глобулины с большей молекулярной массой, труд­нее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;

3) гистоны — низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;

4) протамины отличаются еще более высоким содержанием аргинина (до 85%), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки — составная часть нуклеопротеинов;

5) проламины характеризуются высоким содержанием глутаминовой кисло­ты (30-45%) и пролина (до 15%), нерастворимы в воде, растворяются в 50-90%—яом этаноле;

6) глутелины содержат около 45% глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.

Фибриллярные белки характеризуются волокнистой структурой, практически не растворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании, структурных элементов соединительной ткани (коллагены, кератины, эластины).

Сложные белки (протеиды) содержат наряду с протеиногенными аминокис­лотами органический или неорганический компонент иной природы — простетическую группу. Она связана с полипептидной цепью ковалентно, гетеропо-лярно или координационно. Важнейшие представители: гликопротеины (нейтральные сахара, аминосахара, кислые производные моносахаридов), липопротеины (триацилглицериды, фосфолипиды и холестерол), металлопротеины (ион металла, связанный ионной или координационной связью), фосфопротеины (остатки фосфорной кислоты, свя­занные через остаток серина или треонина), нуклеопротеины (нуклеиновые кислоты), хромопротеины (окрашенный компонент — пигмент или хромоген).

Важнейший хромопротеид — гемоглобин.

Нуклеопротеиды — соединения, молекула которых состоит из простого белка и нуклеиновой кислоты: дезоксирибонуклеиновой (ДНК) или рибонуклеиновой (РНК).

ДНК — неразветвленный полимер, образованный из связанных между собой нуклеотидов, содержащих дезоксирибозу. Нуклеотид включает одно из четы­рех азотистых оснований (аденин (А), тимин (Т), гуанин (Г) или цитозин (Ц), остаток рибозы и фосфорной кислоты (Р). Нуклеотиды в полимере соединены между собой через остаток фосфорной кислоты, образующей эфирную связь с С-3 в остатке рибозы предшествующего нуклеотида .

Для ДНК всех видов клеток характерно равенство между количеством остатков аденина и тимина (А = Т), гуанина и цитозина (Г = Ц) — правил Чаргаффа, т.е. число пуриновых оснований равно числу пиримидиновыз Отношение А + Т к Г + Ц варьирует у разных видов в широких пределах -от 0,35 до 2,70.

Относительно друг друга цепи расположены так, что пуриновому основанию в одной из них соответствует пиримидиновое основание в другой. Эти основания комплементарны друг к другу, т.е. пространственно взаимодополняют одна другую.

В молекуле основания связаны водородными мостиками' двумя между А и Т и тремя — между Ц и Г .

ДНК ядра животных клеток представляет собой не одну молекулу, а состоит из многих, распределенных по разным (у человека по 46) хромосомам. Как уже сказано, по первичной структуре, т.е. набору нуклеотидов, во всех клетках организма ДНК совершенно одинакова, в том числе и в специализированных клетках, но отличается по характеру белкового компонента.

РНК в отличие от ДНК, которая находится преимущественно в ядре, содержится в основном в цитоплазме, главным образом в рибосомах (это определяет их название), в небольшом количестве — в ядрах, главным образом

— ядрышках.

Сходна по первичной структуре с ДНК, отличаясь следующим:

1) вместо дезоксирибозы содержит рибозу;

2) вместо тимина — урацил (тимин присутствует в очень малых количествах).

Как и ДНК, РНК — это полимерная цепь, построенная по аналогичному Принципу, не обладает строгой упорядоченностью вторичной структуры (спи-рализованные участки менее протяженны, чем в ДНК, местами образует петли, на протяжении которых азотистые основания связаны водородными мостиками по принципу комп-лементарности в пределах одной цепи (рис.13).

В отличие от ДНК рибонуклеиновые кислоты разнообразны. Наиболее тяжелые происходят из рибосом — рибосомные РНК. Внутри растворимой клеточной фракции содержится растворимая РНК или транспортная (фун­кциональное название). Третья разновидность — информационные РНК.

Рибосомные РНК (р-РНК) связаны с белками рибосомы, представленными десятками разновидностей в пределах одной и той же рибосомы.

Гемоглобин (НЬ) — важ­нейший хромопротеид, обла­дающий уникальной функцией

— перенос кислорода и угле­кислоты.

Белковый компонент НЬ — глобин, небелковый — гем. Структура НЬ неодинакова у разных видов и может иметь варианты у одного вида или одной особи. Отличия касают­ся белковой части — последо­вательности аминокислот. Структура гема идентична у всех позвоночных.

Молекула глобина содержит четыре полипептидные цепи, которые удерживаются вмес­те нековалентными связями. Гемоглобин А — основной ге­моглобин взрослого человека— состоит из двух видов поли-пептидных цепей — а и р. О разновидностям гемогло­бина, связанных с вариантами структуры глобина, мы будем говорить ниже.

Последовательности амино­кислот в НЬА (вообще в гемог­лобине 20 видов животных) расшифрованы полностью

Гем — молекула, построенная из четырех гетероциклов, содержащих азот — пиррольных колец.

Остатки пиррола соединены в молекуле гема по а-углеродным атомам метиновыми мостиками (-СН=), [3-углеродные атомы замещены в пиррольных кольцах метильными группами (4), винильными {2) и остатками пропионовой кислоты (2).

С атомами азота пиррольных колец в геме связан ион двувалентного железа. Кроме того, железо взаимодействует с атомом азота в остатках гистидина (Гис 87 а-субъединицы, Гис 92 [3-субъединицы). С белковой час­тью молекулы гем связан еще и электростатическим взаимодействием через пропиониловые остатки. Со стороны белка в этих связях участвуют остатки основных аминокислот (лизин, аргинин).

Наши рекомендации