Защита человека от поражения электрическим током

Автоматики

Методические указания

по проведению учебной электрослесарной практики

для студентов 1 курса ИФ специальности

110302 «Электрификация и автоматизация сельского хозяйства»

Рязань 2009 г.

Авторы: Фатьянов С.О. к.т.н., доцент, Гордеева Т.Ф. ст.преподаватель, Семина Е.С. ассистент

Под общей редакцией к.т.н., доцента Фатьянова С.О.

Рецензент: доктор биологических наук, зав.кафедрой физики,

профессор В.М.Пащенко

Одобрено методической комиссией инженерного факультета.

Протокол № от 2009 г.

Содержание

с

Общие методические указания……………………………………..4

Раздел 1. Организация практики………………………………………….4

Методические указания по электробезопасности……… ………..5

Экзаменационные вопросы по электробезопасности……………31

Раздел 2. Содержание практики………………………………………….34

Отчетные документы по практике и образец дневника………….35

Методические указания и образец по оформлению

реферата по практике……………………………………………………..42

Контрольные вопросы для зачета по практике………………… 54

Список рекомендуемой литературы…………….………………...54

Общие методические указания

Цель практики – приобретение теоретических знаний и практических навыков, в соответствии с требованиями, предъявляемыми к подготовке рабочих по профессии «Электромонтер» II группы квалификации.

Задачи практики – изучить принцип действия аппаратов измерения: амперметра, вольтметра, омметра, ваттметра и т.д., область их применения, наиболее часто встречающиеся неисправности и методы их устранения, правила техники безопасности при эксплуатации электроустановок.

С начала практики на студентов распространяются общее трудовое законодательство, правила охраны труда и внутреннего распорядка, действующего на предприятии, в академии.

Во время практики за студентами сохраняется право на получение стипендии на общих основаниях.

Студенты имеют право пользоваться литературой, технической и другой документацией, получать консультации специалистов по программе практики и помощь в подборе материала для отчета по практике

Раздел 1. Организация практики

Учебно-методическое руководство практикой осуществляется кафедрой электротехники, электрооборудования и автоматики.

Продолжительность практики – 4 недели.

Руководитель практики организует практику студентов в соответствии с программой и утвержденным графиком, обеспечивают качественное проведение инструктажей по охране труда и технике безопасности, контролируют соблюдение дисциплины, осуществляют учет посещений занятий студентов-практикантов.

Методические указания и экзаменационные

вопросы по электробезопасности

Электробезопасность и молниезащита зданий и сооружений

Основные понятия

Электрические установки, приборы и агрегаты широко распространены в различных отраслях техники и в быту. При работе с ними необходимо соблюдать требования электробезопасности, которые представляют собой систему организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Напомним некоторые основные понятия, используемые при описании электрических явлений. Электрическим током называют всякое упорядоченное движение носителей зарядов. В металлах носителями зарядов являются электроны — отрицательно заряженные частицы с элементарным зарядом. За направление электрического тока условно принимается направление, противоположное направлению движения отрицательных зарядов. Силой тока i называют количество электричества dq, проходящее через поперечное сечение проводника за бесконечно малый промежуток времени dt.

Защита человека от поражения электрическим током - student2.ru (1)

Если за любые равные промежутки времени через поперечное сечение проводника проходят одинаковые заряды, ток называют достоянным (по величине и направлению) и обозначают буквой I. За единицу тока в системе СИ принят ампер (А).

Переменным называется такой ток, сила или направление которого (или и то и другое) изменяются во времени. Токи, изменяющиеся только по величине, называются пульсирующими.

На рис. 1 представлены графики зависимости величины тока от времени для трех видов тока. В практике наиболее часто используют переменный синусоидальный ток.

Электрической дугой называют длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии (термоэлектронной эмиссией называют выход электронов из металла под действием теплового движения при нагреве) с отрицательно заряженного электрода — катода.

Защита человека от поражения электрическим током - student2.ru

Статическое электричество — это совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых (диэлектриками называют вещества, практически не проводящие электрического тока, а полупроводниками — большой класс веществ, сопротивление которых изменяется в широких пределах и в очень сильной степени уменьшается с повышением температуры) веществ, материалов, изделий или на изолированных проводниках.

Молниезащита — это система защитных устройств и мероприятий, применяемых в промышленных и гражданских сооружениях для защиты их от аварии, пожаров при попадании в них молнии. Молния — особый вид прохождения электрического тока через огромные воздушные промежутки, источник которого — атмосферный заряд, накопленный грозовым облаком.

Поражение электрическим током организма человека носит название электротравмы. На производстве число травм, вызванных электрическим током, относительно невелико и составляет 11—12% их общего числа, однако из всех случаев травм со смертельным исходом на долю электротравм приходится наибольшее количество (порядка 40%). До 80% всех случаев поражения электрическим током со смертельным исходом приходится на электроустановки напряжением до 1000 В (в первую очередь работающих под напряжением 220—380 В).

Проходя через организм человека, электрический ток оказывает термическое, электролитическое и биологическое действие. Первое заключается в нагреве и ожогах различных частей и участков тела человека, второе — в изменении состава (разложение) и свойств крови и других органических жидкостей. Биологическое действие электрического тока выражается в раздражении и возбуждении живых тканей организма и в нарушении протекания в нем различных внутренних биоэлектрических процессов. Примером таких нарушений может служить прекращение процесса дыхания и остановка сердца.

Электротравмы принято делить на общие (электрические удары) и местные, под которыми понимают четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги. Местные элетротравмы — это электрические ожоги, электрические знаки на коже, металлизация кожи, механические повреждения и электроофтальмия. .

Электрические ожоги вызываются протеканием тока через тело человека, особенно при непосредственном контакте тела с электрическим проводом, а также под воздействием на тело человека электрической дуги (дуговой ожог), температура которой достигает нескольких тысяч градусов. Приблизительно 2/3 всех электротравм сопровождается ожогами.

На коже в тех местах, где проходил электрический ток, появляются электрические знаки, представляющие собой пятна серого или бледно-желтого цвета. Эти пятна, как правило, излечиваются, и с течением времени пораженная кожа приобретает нормальный вид. Такие знаки встречаются примерно у каждого пятого получившего электротравму.

Под действием электрической дуги в верхние слои кожи человека могут проникнуть мелкие расплавленные частицы металла. Такая электротравма носит название металлизации кожи и встречается приблизительно у каждого десятого пострадавшего.

Довольно редко могут возникнуть механические повреждения органов и тканей человеческого тела (разрывы кожи и различных тканей, вывихи, переломы костей и др.) в результате судорожных сокращений мышц, вызываемых действием тока.

Еще одним видом местной электротравмы является электроофтальмия — возникающее под действием ультрафиолетового излучения электрической дуги воспаление наружных оболочек глаз. В ряде случаев лечение этого профессионального заболевания является сложным и длительным.

Более трети всех электротравм приходится на электрический удар, под которым понимают возбуждение живых тканей организма электрическим током, проходящим через него, сопровождающееся судорожными сокращениями мышц тела. По тяжести последствий электроудары делятся на четыре степени:

• первая — судорожное сокращение мышц без потери сознания;

• вторая — судорожное сокращение мышц с потерей сознания; дыхание и деятельность сердца сохраняются;

• третья — потеря сознания, нарушение сердечной деятельности и дыхания или того и другого;

• четвертая — клиническая (мнимая) смерть, т. е. отсутствие дыхания и кровообращения.

Следует различать понятие клинической (мнимой) и биологической (истинной) смерти. У здоровых людей, подвергшихся воздействию электрического тока, длительность клинической смерти (у человека в состоянии клинической смерти наблюдается отсутствие дыхания и остановка сердца, он не реагирует на болевые раздражители, а зрачки его глаз (расширенные) — на воздействие света) составляет 7—8 минут. За этот период средствами современной медицины (реанимация) возможно оживление организма. В более поздние сроки в клетках и тканях организма возникают необратимые изменения, т. е. наступает биологическая (истинная) смерть.

Последствия действия тока на организм человека зависят от силы тока (основной фактор), длительности его действия, рода и частоты тока, пути тока в теле человека и индивидуальных свойств человека. Важной характеристикой, определяющей исход воздействия тока, является электрическое сопротивление тела человека, которое является суммой сопротивления кожи и сопротивления внутренних тканей. Ток, проходящий через тело человека (/чел, А), условно определяют по закону Ома:

Защита человека от поражения электрическим током - student2.ru (2)

где Vпр- приложенное напряжение; Rчел - сопротивление тела человека, Ом.

Для расчетов обычно принимают, что Rчел = 1000 Ом. Основное сопротивление распространению тока оказывает кожа человека. В том случае, если кожа повреждена, увлажнена или загрязнена токопроводящей пылью (металлической или углеродной), сопротивление тела человека может быть и ниже 1000 Ом.

Как уже сказано выше, основным физическим фактором, вызывающим тяжесть электротравмы, является сила тока — количество электричества, проходящего через тело человека в единицу времени. Принято различать три ступени воздействия тока на организм человека и соответствующие им три пороговых значения: ощутимое, отпускающее и фибрилляционное.

Пока сила тока не достигла ощутимого значения, человек не чувствует его воздействия. Если человек попал под воздействие переменного тока промышленной частоты (f=50 Гц), он начинает ощущать протекающий через него ток, когда его значение достигнет 0,6—1,5 мА. Для постоянного тока это пороговое значение составляет 6—7 мА. Ощутимый ток вызывает у человека малоболезненные (или безболезненные) раздражения, и человек может самостоятельно освободиться от провода или токоведущей части, находящейся под напряжением.

Если сила переменного тока, протекающего через организм, составляет 10—15 мА и более, а постоянного — 50—70 мА (или более), то такие токи называют неотпускающими, так как они вызывают непреодолимые и болезненные судорожные сокращения мышц рук при касании ими (захвате) токопроводящих частей или проводов. Человек не может самостоятельно разжать руку и освободиться от воздействия тока. При повышении силы переменного тока промышленной частоты до 25— 50 мА затрудняется или даже прекращается процесс дыхания (при воздействии этого тока в течение нескольких минут).

Фибрилляционными называют токи, вызывающие быстрые хаотические и разновременные сокращения волокон сердечной мышцы (фибрилл), в результате чего сердце теряет способность перекачивать кровь, в организме прекращаются процессы кровообращения и дыхания и наступает смерть. При воздействии переменного тока промышленной частоты величина порогового фибрилляционного тока составляет 100 мА (при продолжительности воздействия более 0,5 с), а для постоянного тока — 300 мА при той же продолжительности.

Степень поражения электрическим током зависит также от рода и частоты тока. Переменный ток с частотой от 20—100 Гц наиболее опасен для человека. Токи с частотой выше 500 000 Гц могут вызвать лишь термические ожоги и не оказывают раздражающего действия на ткани организма. Известно, что при напряжениях, превышающих 500 В, наиболее опасен постоянный ток, а при меньших напряжениях — переменный.

Чем больше время воздействия тока, тем сильнее будет поражение и тем меньше вероятность восстановления жизненных функций организма. В табл. 1 представлены значения предельно допустимых уровней напряжения и тока в зависимости от продолжительности воздействия на организм человека.

Таблица 1. Предельно допустимые уровни напряжения и тока

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воздействия тока, с
0,01-0,08 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св. 1,0
Переменный 50Гц Напряжение, В
Ток, мА
Переменный 400Гц Напряжение, В
Ток, мА
Постоянный Напряжение, В
Ток, мА

Существенное влияние на тяжесть поражения человека электрическим током оказывает путь, по которому он распространяется в организме. Так, опасность поражения резко увеличивается, если на пути тока оказываются мозг, сердце или легкие.

Цепь тока через тело человека зависит от места его прикосновения к оголенным проводам или токоведущим частям. Наиболее характерны следующие цепи: руки—ноги, рука—рука и рука—туловище.

К индивидуальным качествам человека в первую очередь относится состояние его здоровья, обученность правильной безопасной работе на электроустановках (с присвоением соответствующей квалификационной группы) и др.

Условия, в которых работает человек, могут увеличивать или уменьшать опасность его поражения электрическим током. К ним относятся сырость, высокая температура воздуха, наличие в помещениях токопроводящей пыли, химически активной или органической среды и др. Для учета условий, в которых находится работающий, все помещения принято делить по степени опасности поражения током на три категории: без повышенной опасности, с повышенной опасностью, особо опасные.

Помещениями без повышенной опасности называют сухие (с относительной влажностью воздуха, не превышающей 60%), безпыльные, с нормальной температурой воздуха и с изолирующими (например, деревянными) полами. К ним относятся жилые помещения и такие производственные помещения, как цеха приборных предприятий и радиозаводов, лаборатории, конструкторские бюро, заводоуправление, конторские помещения и др.

Для помещений с повышенной опасностью характерно наличие одного из следующих условий: сырость (помещения называют сырыми, если относительная влажность в них превышает 75%); токопроводящая пыль (металлическая, углеродная и т.д.); токопроводящие полы — металлические, земляные, железобетонные, кирпичные; высокая температура, длительно превышающая 35°С или кратковременно 40°С (помещения с такой температурой называют жаркими); возможность одновременного прикосновения к металлическим деталям и корпусам электрооборудования, которые при повреждении изоляции могут оказаться под напряжением, и заземленным металлоконструкциям. Примером таких помещений могут служить лестничные клетки различных зданий с токопроводящими полами, цеха механической обработки материалов, складские не отапливаемые помещения и др.

Особо опасные помещения характеризуются наличием одного из следующих условий; особая сырость (стены, пол и потолок таких помещений покрыты влагой; относительная влажность воздуха в них близка к 100%); наличие химически активной (агрессивные газы, пары, жидкости) или органической (плесень и т.д.) среды, которые разрушающе действуют на электроизоляцию и токоведущие части электрооборудования. При наличии двух или более условий повышенной опасности (например, высокая температура и токопроводящая пыль) в помещении его следует относить к особо опасным. Примером таких помещений могут служить помещения гальванических цехов, моечные отделения, замкнутые металлические емкости, в которых производится работа, и др.

Человек может получить электротравму в следующих случаях:

• при двухфазном прикосновении, т. е. при одновременном прикосновении к двум фазам сети переменного тока;

• при двухполюсном прикосновении, т.е. при одновременном прикосновении к двум полюсам сети постоянного тока;

• при приближении на опасные расстояния к неизолированным токопроводящим частям, находящимся под напряжением;

• в результате прикосновения к оболочке (корпусу) электрооборудования, оказавшейся под напряжением;

• в результате попадания под напряжение шага в зоне растекания тока;

• при попадании под напряжение при освобождении человека от воздействия тока;

• при воздействии атмосферного электричества, грозовых разрядов и статического электричества или электрической дуги.

Ток, проходящий через тело человека (ток поражения), зависит от напряжения и схемы питания электроустановок, сопротивления элементов электрической сети и условий включения человека в цепь тока. Рассмотрим эти вопросы подробнее.

Все электроустановки условно делят на работающие под напряжением до 1000 В и выше 1000 В. Если установки работают под напряжением выше 1000 В, то прикосновение к токопроводящим частям опасно в любых условиях. При эксплуатации установок, работающих под напряжением до 1000В, человек может быть поражен током в результате случайного прикосновения к токопроводящим частям или корпусам электрооборудования, оказавшимися под напряжением при замыкании на них тока.

Чаще всего электроустановки напряжением до 1000 В работают от четырехпроводных сетей с глухозаземленной нейтралью (нейтралью называется нейтральная точка источника питания - генератора, трансформатора).

Электрические сети с глухозаземленной нейтралью используются для питания основной массы электроустановок, работающих под напряжением 380/220 В (электродвигатели, осветительные приборы, установки электронагрева, бытовая электроаппаратура и др.).

При повышенных требованиях безопасности используются с изолированной от земли нейтралью. Они используются для питания электроустановок, работающих под напряжением до 1000 В, но гораздо менее распространены, чем предыдущие.

При работе с электроустановками возможно прикосновение операторов к токоведущим частям оборудования. Наиболее часто встречаются две схемы включения человека в электрическую сеть: двухфазная — присоединение человека к двум проводам и однофазная — включение человека между проводом и землей.

Ток, протекающий через тело человека при двухфазном включении, независимо от режима нейтрали (глухозаземленная или изолированная), может быть рассчитан по закону Ома:

Защита человека от поражения электрическим током - student2.ru (3)

где Vлин — линейное напряжение сети, В;

Rчел — сопротивление тела человека, Ом (Rчел = 1000 Ом).

Для сети с линейным напряжением 380 В ток поражения составит: /чел = 380 В/1000 Ом = 0,38 А = 380 мА. Этот ток, безусловно, смертелен для человека, так как величина фибрилляционного тока составляет всего 100 мА. На практике случаи двухфазного включения человека в электрическую сеть происходят гораздо реже, чем однофазного включения, и могут происходить при замене плавких предохранителей, в случае прикосновения к двум проводникам с поврежденной изоляцией и в ряде других случаев.

Чаще на практике встречается однофазное включение человека в электрическую сеть. В этом случае ток поражения /чел зависит оттого, заземлена нейтраль источника тока или нет. Если человек прикоснется к фазному проводу с нарушенной изоляцией при заземленной нейтрали, то через него пройдет ток, определяемый выражением:

Защита человека от поражения электрическим током - student2.ru (4)

где Vф — фазное напряжение, В. Фазное напряжение — это напряжение между началом и концом одной обмотки источника тока (трансформатора, генератора) или между фазным и нулевым проводами. Существует следующая связь между линейным (Vл) и фазным (Vф) напряжениями:

Защита человека от поражения электрическим током - student2.ru

Rп— сопротивление участка пола, имеющего соприкосновение со ступнями ног, Ом;

Rчел — сопротивле­ние тела человека, Ом;

Rоб — сопротивление обуви, Ом;

Rо — сопротив­ление заземления нейтрали, Ом.

Рассчитаем величину тока поражения для случая, когда человек стоит на мокром металлическом полу (Rп = 0) во влажной обуви (Rоб = 0), по следующей формуле:

Защита человека от поражения электрическим током - student2.ru (5)

Этот ток является опасным, так как существенно превышает уровень фибрилляционного тока.

Рассмотрим теперь, как определяется ток поражения (/чел) в электрических сетях с изолированной нейтралью при однофазном включении человека в сеть. Если сеть имеет небольшую протяженность и емкостью проводов относительно земли можно пренебречь, /чел можно рассчитать по формуле:

Защита человека от поражения электрическим током - student2.ru (6)

где Rиз — сопротивление изоляции проводов, Ом.

Если сопротивление изоляции стремится к нулю (оголенные провода), то данное выражение сводится к предыдущему (Iчел = = Уф/Rчел), и ток поражения (при Уф = 220 В и Rчел= 1000 Ом) составит 220 мА. Рассмотрим, как влияет сопротивление изоляции на /чел. Пусть сопротивление изоляции мало (Rm = 3000 Ом).

Тогда

Защита человека от поражения электрическим током - student2.ru

Этот ток также опасен, так как превышает величину фибрилляционного тока.

Если сопротивление изоляции имеет большое значение (например, Rиз = 300000 Ом), то

Защита человека от поражения электрическим током - student2.ru (7)

т. е. опасность поражения электрическим током значительно уменьшается.

Из представленного примера следует, что изоляция токопроводов является одной из основных мер электрозащиты.

В производственных условиях возможны случаи обрыва электрических проводов и падения их на землю или нарушение изоляции кабеля, находящегося в земле. При этом вокруг любого проводника, оказавшегося на земле или в земле, образуется зона растекания тока. Если человек окажется в этой зоне и будет стоять на поверхности земли, имеющей различные электрические потенциалы в местах, где расположены ступни его ног, то по дли­не шага возникает шаговое напряжение Vшаг (рис. 2). Шаговым напряжением или напряжением шага называется напряжение между двумя точками цепи тока, находящимися на расстоянии шага (0,8—1,0 м), на которых одновременно стоит человек.

Защита человека от поражения электрическим током - student2.ru

Рис. 2. Схема возникновения шагового напряжения:

1 — электрическая сеть; 3 — человек, находящийся под действием шагового напряжения; 2 — точка падения провода на землю

Напряжение шага Vш определяется по формуле:

Vш=VI- VII (8)

где V1 — потенциал в точке касания земли одной ноги человека, В;

VII — потенциал в точке касания земли второй ноги человека, В.

Наибольший электрический потенциал возникает в точке соприкосновения провода с землей. Опасность поражения человека шаговым напряжением повышается по мере приближения человека к месту замыкания провода на землю и при увеличении величины шага. Практически напряжение шага падает до нуля на расстоянии 20 м от точки падения провода. Выходить из зоны поражения следует мелкими шагами. Защитное действие оказывает обувь, обладающая изоляционными свойствами, например резиновая.

Защита человека от поражения электрическим током

Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.

Основные способы и средства электрозащиты:

• изоляция токопроводящих частей и ее непрерывный контроль;

• установка оградительных устройств;

• предупредительная сигнализация и блокировки;

• использование знаков безопасности и предупреждающих плакатов;

• использование малых напряжений;

• электрическое разделение сетей;

• защитное заземление;

• выравнивание потенциалов;

• зануление;

• защитное отключение;

• средства индивидуальной электрозащиты.

Изоляция токопроводящих частей — одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5—10 МОм1. Различают рабочую, двойную и усиленную рабочую изоляцию.

Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента бытовых электрических приборов и т.д.). Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз пре вышает сопротивление обычной рабочей. В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.

Существуют основные и дополнительные изолирующие средства. Основными называют такие электрозащитные средства, изоляция которых надежно выдерживает рабочее напряжение. Дополнительные электрозащитные средства усиливают изоляцию человека от токопроводящих частей и земли. В табл. 20.2 приведены основные сведения об изолирующих электрозащитных средствах.

Неизолированные токопроводящие части электроустановок, работающих под любым напряжением, должны быть надежно ограждены или расположены на недоступной высоте, чтобы исключить случайное прикосновение к ним человека. Конструктивно ограждения изготавливают из сплошных металлических листов или металлических сеток.

Для предупреждения об опасности поражения электрическим током используют различные звуковые, световые и цветовые сигнализаторы, устанавливаемые в зонах видимости и слышимости персонала. Кроме того, в конструкциях электроустановок предусмотрены блокировки — автоматические устройства, с помощью которых преграждается путь в опасную зону или предотвращаются неправильные, опасные для человека действия. Блокировки могут быть механические (стопоры, защелки, фигурные вырезы), электрические или электромагнитные. Для информации персонала об опасности служат предупредительные плакаты, которые в соответствии с назначением делятся на предостерегающие, запрещающие, разрешающие и напоминающие. Части оборудования, представляющие опасность для людей, окрашивают в сигнальные цвета и на них наносят знак безопасности (в соответствии с ГОСТом 12.4.026-76 «Цвета сигнальные и знаки безопасности»). Красным цветом окрашивают кнопки и рычаги аварийного отключения электроустановок.

Таблица 2.Классификация изолирующих электрозащитных средств

Защита человека от поражения электрическим током - student2.ru

Для уменьшения опасности поражения током людей, работающих с переносным электроинструментом и осветительными лампами, используют малое напряжение, не превышающее 42 В. В ряде случаев, например, при работе в металлическом резервуаре, для питания ручных переносных ламп используют напряжение 12 В.

Для повышения безопасности проводят электрическое разделение сетей на отдельные короткие электрически не связанные между собой участки с помощью разделяющих трансформаторов. Такие разделенные сети обладают малой емкостью и высоким сопротивлением изоляции. Раздельное питание используют при работе с переносными электрическими приборами, на строительных площадках, при ремонтах на электростанциях и др.

При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.

Защитное заземление — это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.

Если произошло замыкание и корпус электроустановки оказался под напряжением, то прикоснувшийся к нему человек попадает под напряжение прикосновения (Упр), которое определяется выражением:

Защита человека от поражения электрическим током - student2.ru (9)

где V3 — полное напряжение на корпусе электроустановки, В;

Vх — потенциал поверхности земли или пола, В.

Таким образом, напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно может коснуться человек.

Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 3).

Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по Формуле:

Защита человека от поражения электрическим током - student2.ru

(10)

где апр — коэффициент напряжения прикосновения или просто коэффициент прикосновения (апр < 1 и зависит от вида заземлителя);

Iз — ток замыкания, А;

Rз — сопротивление защитного заземления, Ом.

Ток, проходящий через тело человека, попавшего под напряжение прикосновения (IА чел , А), составит:

Защита человека от поражения электрическим током - student2.ru

(11)

где Rс — сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека, Ом.

Защита человека от поражения электрическим током - student2.ru

Если человек находится в условиях высокой влажности (Rс -> 0), предыдущую формулу можно упростить:

Защита человека от поражения электрическим током - student2.ru

(12)

Рассчитаем I Ачел для случая, если Iз= 4 А, Rз = 4 Ом и апр = 0,4 (контурный заземлитель):

Защита человека от поражения электрическим током - student2.ru

(13)

Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).

Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.

Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников.

Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.

Заземляющее устройство — это совокупность заземлителей - металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 4).

Защита человека от поражения электрическим током - student2.ru

Контурное заземляющее устройство (рис. 5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.

Защита человека от поражения электрическим током - student2.ru

Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.

Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:

• 4 Ом — в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ*А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;

• 0,5 Ом — в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R, Ом) не должно быть более 250/ Iз (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для ус­тановок напряжением до 1000 В, R не должно быть более 125/ Iз (но не более 4 или 10 Ом соответственно). В этих формулах Iз — ток замыкания на землю, А.

Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.

Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 6).

Защита человека от поражения электрическим током - student2.ru

Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (Iз, А), протекающего в сети, определится из следующей зависимости:

Защита человека от поражения электрическим током - student2.ru (14)

где Vф — фазное напряжение, В;

Ro - сопротивление заземления нейтрали, Ом;

Iз — сопротивление корпуса электроустановки, Ом.

При этом на корпусе электроустановки возникает напряжение относительно земли (Vк), определяемое следующей формулой:

Защита человека от поражения электрическим током - student2.ru (15)

Рассчитаем величину тока короткого замыкания (1к, А) для значений Vф = 220 В и R0 = Rз = 4 Ом:

Защита человека от поражения электрическим током - student2.ru (16)

Ток короткого замыкания /3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит:

Защита человека от поражения электрическим током - student2.ru (17)

где апр — коэффициент напряжения прикосновения.

Если апр = 1 и VK = 110 В, то Iчел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.

Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 7).

Защита человека от поражения электрическим током - student2.ru

Проводник (1), который соединяет зануляемые части элекроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I — II — III — IV — V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).

Цепь зануления I — II — III — IV — V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывние элементов защиты.

Для устранения опасности обрыва нулевого провода устраи­вают его повторное многократное рабочее заземление через ка­ждые 250 м.

Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия:

IKз >k IHOM, (18)

где Iном - номинальное значение тока, при котором происходит срабатывание элемента защиты;

k — коэффициент, характеризующий кратность тока короткого за­мыкания относительно номинального значения тока, при котором срабатывает элемент защиты.

Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3—0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2—3, а во взрывоопасных помещениях — k = 1,4—6.

Еще одна система защиты — защитное отключение — это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.

Основная характеристика этой системы — быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рис. 20.8.

При замыкании фазного провода на заземленный или зануленный корпус электроустановки на нем возникает напряжение корпуса VK. Если оно превышает заранее установленное предельно допустимое напряжение VK доп (т. е. если VK > Ук доп), срабатывает защитное отключающее устройство. Схема работает следующим образом.

Вследствие разности потенциалов между корпусом электроустановки 1 и землей возникает ток Iр , который, проходя через реле 5, замыкает его контакты, подавая питание на отключающую катушку 3. Под влиянием возникшего электромагнитного поля внутрь нее втягивается сердечник 4, вызывая отключение автоматического выключателя 2, и установка обесточивается.

Защитное отключение рекомендуется применять:

• в передвижных установках напряжением до 1000 В;

• для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;

• в электрифицированном инструменте как дополнение к| защитному заземлению или занулению;

• в скальных и мерзлых грунтах при невозможности выполнить необходимое заземление.

Защита человека от поражения электрическим током - student2.ru

1 — корпус электроустановки; 2 — автоматический выключатель; 3 — отключающая катушка; 4 — сердечник катушки; 5 — реле максимального

напряжения; Rз — сопротивление защитного заземления; I3 — ток замыкания; Ip — ток, протекающий через реле; R1 — сопротивление вспомогательного заземления

Рис. 8. Схема защитного отключения

Рассмотрим кратко организационные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок. К ним относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.

Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.

Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.

К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп. Сведения о квалификационных груп­пах персонала представлены в табл. 3.

В ряде случаев существенную опасность для человека представляет статическое электричество, под которым понимают совокупность явлений, связанных с возникновением, сохране­нием и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт. Воздействие статического электричества на организм человека проявляется в виде слабого длительно протекающего тока либо в форме кратковременного разряда через тело человека, в результате чего может произойти несчастный случай.

Вредное воздействие на организм человека оказывает и электрическое поле повышенной напряженности. Оно вызывает функциональные изменения центральной нервной, сердечнососудистой и некоторых других систем организма.

Защиту от статического электричества осуществляют по двум основным направлениям: уменьшение генерации электрических зарядов и устранение зарядов статического электричества. Для реализации первого направления необходимо правильно подбирать конструкционные материалы, из которых изготавливаются машины, агрегаты и прочее технологическое оборудование. Эти материалы должны быть слабо электризующимися или неэлектризующимися. Например, синтетический материал, состоящий на 40% из нейлона и 60% дакрона, не электризуется при трении о хромированную поверхность.

Таблица 3. Квалификационные группы персонала, обслуживающего электроустановки

Защита человека от поражения электрическим током - student2.ru

Для снятия зарядов статического электричества с поверхности технологического оборудования его обязательно заземляют.

Кроме перечисленных способов защиты от статического электричества большое значение имеет снижение удельного поверхностного электрического сопротивления перерабатываемых материалов. Это достигается повышением относительной влажности в помещении, где производится обработка поглощающих воду материалов (древесины, бумага, хлопчатобумажной ткани и др.), до 65—70%, нанесением на их поверхность специальных антистатических составов, введением в состав твердых диэлектриков электропроводящих материалов (графита, углеродных волокон, алюминиевой пудры и т.д.). Существуют и другие методы защиты от статического электричества.

Молниезащита

Важным вопросом электробезопасности является защита от удара молний, или молниезащита.

Молния — это особый вид прохождения электрического тока через огромные воздушные промежутки, источник которого — атмосферный заряд, накопленный грозовым облаком.

Различают три типа воздействия тока молнии: прямой удар, вторичное воздействие заряда молнии и занос высоких потенциалов (напряжения) в здания. При прямом разряде молнии в здание или сооружение может произойти его механическое или термическое разрушение. Последнее проявляется в виде плавления или даже испарения материалов конструкции. Вторичное воздействие разряда молнии заключается в наведении в замкнутых токопроводящих контурах (трубопроводах, электропроводках и др.), расположенных внутри зданий, электрических токов. Эти токи могут вызвать искрение или нагрев металлических конструкций, что может стать причиной возникновения пожара или взрыва в помещениях, где используются горючие или взрывоопасные вещества. К этим же последствиям может привести и занос высоких потенциалов (напряжения) по любым металлоконструкциям, находящимся внутри зданий и сооружений под действием молнии.

Для защиты от действия молнии устраивают молниеотводы (громоотводы). Это заземленные металлические конструкции, которые воспринимают удар молнии и отводят ее ток в землю. Различают стержневые и тросовые молниеотводы. Их защитное действие основано на свойстве молний поражать наиболее высокие и хорошо заземленные металлические конструкции.

Молниеотводы характеризуются зоной защиты, которая определяется как часть пространства, защищенного от удара молнии с определенной степенью надежности. В зависимости отстепени надежности зоны защиты могут быть двух типов — А и В. Тип зоны защиты выбирают в зависимости от ожидаемого количества поражений молнией зданий и сооружений в год ( Если величина N > 1, то принимают зону защиты типа А (степень надежности защиты в этом случае составляет не менее 99,5%). При N £ 1 принимают зону защиты типа В (степень надежности этой защиты — 95% и выше).

Рассмотрим, какую зону защиты образует стержневой отдельно стоящий молниеотвод (рис. 9).

Защита человека от поражения электрическим током - student2.ru

1 — граница зоны защиты на уровне высоты объекта; 2 — то же, на уровне земли; h — высота молниеотвода; hо - высота конуса защиты; hх — высота защищаемого объекта; гх — радиус зоны защиты на уровне высоты объекта; rо — радиус зоны защиты объекта на уровне земли

Рис. 9. Зона защиты одиночного стержневого молниеотвода

Как следует из рисунка, зона защиты для данного молниеотвода представляет собой конус высотой h0 с радиусом основания на земле r0. Обычно высота молниеотвода (А) не превышает 150 м. Остальные размеры зоны в зависимости от величины (h, м) следующие (табл. 4):

Таблица 4. Параметры зоны защиты для молниеотвода

Защита человека от поражения электрическим током - student2.ru

Существуют также зависимости, позволяющие, задаваясь размерами защищаемого объекта (hx и гх), определить величину h. Эта зависимость для зоны Б имеет вид:

Защита человека от поражения электрическим током - student2.ru (19) ;

Для молниеотводов других типов зависимости иные.

Наши рекомендации