Первичная квантовая протоклетка

Давайте представим, что нам необходимо создать простую живую клетку из неживой материи; возможно, это будет клетка, способная выполнять простые задачи, например найти себе пищу в своего рода «первичном море», также созданном в лабораторных условиях. Наша задача заключается в том, чтобы создать две такие модели. Одна клетка должна использовать таинственные свойства квантовой механики (назовем ее квантовой протоклеткой ), а другая не будет их использовать (мы будем называть ее классической протоклеткой ).

Хорошим отправным пунктом для обеих моделей могли бы стать протоклетки Себастиана Лекоммандо, состоящие из многочисленных ячеек, связанных мембранами. Мы можем использовать различные ячейки протоклетки для разграничения различных функций жизни. Затем мы должны обеспечить нашу протоклетку источником энергии — для этого мы будем использовать неограниченную энергию протонов — частиц солнечного света. Заполним одну из ячеек протоклетки молекулами пигмента и каркасного белка — таким образом мы получим одну из форм солнечной батареи, способной улавливать протоны и превращать их энергию в экситоны. Иными словами, мы получим искусственный хлоропласт. Однако беспорядочно перемешанные молекулы пигмента вряд ли смогут обеспечить высокоэффективную передачу энергии, которая характеризует процесс фотосинтеза. В подобной молекулярной неразберихе невозможно поддерживать квантовую когерентность, необходимую для эффективного переноса энергии. Чтобы получить квантовые биения, мы должны заставить молекулы пигмента двигаться так, чтобы когерентная волна прошла через всю систему клетки.

В 2013 году группе ученых из Чикагского университета под руководством Грега Энджела, пионера в области квантового фотосинтеза, удалось решить эту проблему, объединив молекулы в фиксированную группу с помощью химических связей. Как и в случае с комплексом FMO, в котором Энджел впервые обнаружил квантовые биения (см. главу 4), искусственно созданная система молекул пигмента также произвела когерентные квантовые биения, которые продолжались несколько десятков фемтосекунд, причем при комнатной температуре[195]. Итак, чтобы обеспечить солнечную батарею нашей квантовой протоклетки экситонами, чья эффективность будет зависеть от когерентности, мы заполним ее молекулами пигмента, связанными способом, предложенным Энджелом. Классическая протоклетка будет содержать те же пигменты, однако они будут располагаться в ней в случайном порядке, так что экситону придется с большим трудом прокладывать путь через всю систему. Таким образом мы смогли бы проверить, зависит эффективность продвижения экситона от фотосинтеза или нет.

Однако, как мы уже говорили, захват частиц света является только первой стадией фотосинтеза. Затем нам необходимо преобразовать нестабильную энергию экситона в стабильную химическую форму. Ученые уже добились результатов в этом направлении. После того как в 2013 году группа ученых под руководством Скалли опубликовала статью о том, что фотосинтетический реакционный центр является не чем иным, как квантовой паровой машиной, исследователи пришли к мысли о том, что биологические квантовые паровые машины могут стать образцом для создания более эффективных фоточувствительных клеток[196]. Позже в том же году ученые из Кембриджского университета, ухватившись за эту идею, создали подробную модель искусственной фоточувствительной клетки, которая должна функционировать как квантовая паровая машина[197]. Группа исследователей смоделировала искусственный реакционный центр из молекулы пигмента, связанной с другими молекулами способом Энджела, и показала, что при данном расположении молекул перенос экситона к молекуле-акцептору осуществляется с эффективностью, превышающей предел Карно, как и в эксперименте Скалли с естественным процессом фотосинтеза.

Итак, давайте представим, что наша квантовая солнечная батарея оснащена искусственным реакционным центром, устроенным по модели команды ученых из Кембриджа, который способен улавливать электроны высокой энергии в виде стабильной химической энергии. Мы снова создадим систему, которую будем противопоставлять классической фоточувствительной клетке, осуществляющей подобный перенос энергии без преодоления предела Карно. Захваченная клеткой энергия солнечного света может использоваться для создания сложных биомолекул, например молекул пигмента.

Однако, как и электроны, биосинтетические реакции нуждаются в дополнительном количестве энергии, которое в наших клетках (см. главу 3) обеспечивается клеточным дыханием. «Вдохновившись» дыханием, мы переместим несколько высокоэнергетических электронов в ячейку клетки, которая выполняет функцию электростанции. Здесь электроны туннелируют от одного фермента к другому, как и в естественной дыхательной цепи, и образуют АТФ — носитель молекулярной энергии клетки. Перед нами стоит новая задача: сконструировать в клетке дыхательный центр и оценить роль квантовой механики в этом важнейшем биологическом процессе.

Оснащенная источником электронов и дополнительной энергии, наша квантовая фоточувствительная клетка способна производить собственные биомолекулы. Однако для этого она нуждается в источнике сырья для биомолекул, а попросту — в пище. Итак, мы обеспечиваем нашу клетку таким источником — простым сахаром, а точнее, глюкозой, растворенной в нашем лабораторном «первичном океане» (среде, в которой пребывает наша клетка). Нам потребуется встроить в клетку работающие на энергии АТФ станции переработки сахара, закачивающие глюкозу в клетку и при помощи других ферментов, способных управлять отдельными атомами молекул глюкозы (здесь мы имеем дело уже с квантовой инженерией), образующие более сложные биомолекулы. Многие из этих ферментов обычно используют туннелирование электронов и протонов (об этом мы говорили в главе 3), однако наша задача снова будет заключаться в том, чтобы смоделировать два варианта клеток (один — с возможностью использовать свойства квантового мира, другой — без), чтобы проверить, действительно ли квантовая механика обеспечивает эти движущие силы жизни необходимой энергией.

Проектируя нашу квантовую протоклетку, мы должны будем предусмотреть еще одно ее свойство — способность укрощать разрушительные силы молекулярного шума, чтобы поддерживать квантовую когерентность. В настоящее время нам слишком мало известно о том, каким образом это удается живой клетке, поэтому мы едва ли способны искусственно создать клетку с таким свойством. Здесь могут быть задействованы многие факторы: например, известно, что избыточное количество молекул в среде живой клетки влияет на ход многих биохимических реакций[198], а также способствует сдерживанию разрушительного влияния молекулярного шума. Поэтому нам придется заполнить протоклетку биомолекулами практически «под завязку», чтобы создать подобие заполненной молекулами среды живой клетки в надежде, что это поможет направить силу термодинамических шквалов и порывов на поддержание квантовой когерентности.

И все же наша квантовая протоклетка представляет собой слишком капризное судно — на его борту заранее должны присутствовать все необходимые ферменты. Чтобы она обладала самодостаточностью, мы должны создать в одной из ее ячеек центр управления. В центр управления необходимо поместить геном из искусственно созданной ДНК, способной кодировать все необходимые клетке белки, а также механизм, превращающий код, основанный на квантовых протонах, в белки. Это напоминает эксперимент Крейга Вентера в рамках синтетического подхода «сверху вниз» с той лишь разницей, что наш геном будет встроен в неживую протоклетку. И последнее: мы могли бы обеспечить нашу протоклетку системой навигации. В этом случае протоклетка будет обладать молекулярным нюхом, способным определять расположение питательных веществ посредством обонятельного рецептора, действующего на основе квантовой запутанности (принцип действия обонятельного рецептора описан в главе 5), а также молекулярным мотором, который будет обеспечивать движение протоклетки по «первичному океану». Возможно, мы могли бы создать в клетке квантовую навигационную систему, которой обладает описанная нами в начале книги малиновка. Подобная система позволила бы протоклетке без труда ориентироваться в лабораторном «первичном океане».

Описанный нами проект представляет собой эпизод из области научной фантастики. Он не более реален, чем шекспировский Ариэль. В описании мы опустили огромное количество подробностей и, в целях простого и ясного изложения, не упомянули о многих других колоссально трудных задачах, с которыми сталкиваются ученые, берущиеся за проект на основе принципа «снизу вверх» синтетической биологии. Если бы какая-нибудь группа ученых и взялась за подобный проект, стало бы ясно, что невозможно запустить все необходимые процессы одновременно, как это предусматривает наш воображаемый алгоритм. Для начала в протоклетке необходимо обеспечить самый простой или самый понятный процесс, возможно фотосинтез. Этот первый шаг уже будет огромным достижением, а полученная протоклетка — идеальной моделью для исследования роли квантовой когерентности в процессе фотосинтеза. Если бы создание такой протоклетки было возможным, следующие этапы эксперимента заключались бы в усложнении ее строения. В конце концов, мы, возможно, могли бы получить синтезированную живую клетку. Мы предполагаем, что подобный проект осуществим при условии тесного сотрудничества синтетической биологии с квантовой механикой. Мы уверены, что механизм жизни не работает, если не имеет связи с квантовым миром.

Итак, если взяться за детальную разработку описанного нами проекта, возможно, в результате ученым удастся создать новую форму жизни, а значит, дать человечеству поистине революционную технологию — искусственную жизнь, функционирующую на краю квантового и видимого миров. Синтезированные живые клетки могли бы стать строительным материалом для экоустойчивых и самодостаточных «живых» зданий. Такие клетки могли бы выполнять задачи микрохирургов, внедряемых в организм человека для замены или восстановления поврежденных или изношенных тканей. Фантастические возможности квантовой биологии, которые мы рассмотрели в данной книге (фотосинтез и действие ферментов, квантовые обонятельные рецепторы и геномы, квантовые компасы и, возможно, даже квантовый мозг), могут однажды быть использованы для создания дивного нового мира синтезированных живых организмов, которые избавили бы своих создателей от рутинной работы по удовлетворению большинства потребностей.

Однако самое важное, на наш взгляд, заключается в следующем: возможность создать жизнь с нуля ответит наконец на главный вопрос биологии «Что есть жизнь?» и утверждение Фейнмана «Мы не понимаем того, чего не можем создать» больше не будет относиться к таинственному феномену жизни. Если нам удастся создать искусственную жизнь, мы наконец сможем утверждать, что понимаем жизнь и ее удивительную способность укрощать силы хаоса и плыть на всех парусах по узкому проливу — границе видимого и квантового миров.

…затмил я солнце,

Мятежный ветер подчинил себе,

В лазурь небес взметнул зеленый вал

И разбудил грохочущие громы.

Уильям Шекспир. Буря. Акт V, сцена 1

Эпилог: квантовая жизнь

Малиновка, о которой мы говорили в главе 1, благополучно перезимовала под средиземноморским солнцем и теперь порхает между редкими лесами и древними камнями Карфагена в Тунисе. Она кормится мухами, жуками, червями и зернами — иными словами, биомассой, созданной из воздуха и света настоящими квантовыми фотосинтетическими машинами, которые мы называем растениями и животными. Но вот наступает время, когда полуденное солнце греет нестерпимо горячо и осушает ручьи в лесу. Выжженный солнцем лес перестает быть гостеприимным домом для нашей родственницы воробья. Приходит время улетать.

День начал клониться к вечеру, и крохотная птичка вспорхнула на высокую ветку кедра. Она осторожно чистит клювом перышки, как делала это несколько месяцев назад. Она слушает щебет других птиц, которые тоже готовятся к долгому перелету. Когда последние солнечные лучи исчезают за горизонтом, малиновка поворачивается на север, расправляет крылья и взмывает в вечернее небо.

Она направляется к северному побережью Африки, пересекает Средиземное море, строго следуя своему маршруту, только в обратном направлении. Как и полгода назад, ее ведет внутренний компас с встроенной квантовой стрелкой. Каждый взмах ее крыльев приводится в действие сокращением мышечных волокон. Источником энергии для этих сокращений является квантовое туннелирование электронов и протонов посредством дыхательных ферментов. Через несколько часов полета наша малиновка достигает побережья Испании и спускается в лес в речной долине Андалусии. Здесь она отдыхает среди богатой растительности. Ива, клен, вяз и ольха, фруктовые деревья и цветущие кустарники, например олеандр, — все они появились в результате квантового фотосинтеза. Молекулы запахов проникают в ее носовые ходы, связываются с молекулами обонятельных рецепторов и запускают квантовое туннелирование. Через квантовые когерентные ионные каналы в мозг птицы поступают нервные импульсы, и она понимает, что неподалеку растут цитрусовые деревья, на которых обитают пчелы и другие насекомые-опылители, которыми она сможет полакомиться перед следующим этапом своего путешествия.

После нескольких дней полета малиновка наконец возвращается в скандинавский хвойный лес, который она покинула много месяцев назад. Ее главная задача сейчас — найти самца. Самцы вернулись несколькими днями раньше, нашли подходящие для гнездования места и завлекают самок своими трелями. Нашу малиновку привлекает особенно мелодичная песня одного самца, который во время ритуала ухаживания угощает ее личинками жука. После короткого спаривания сперма самца соединяется с яйцеклеткой самки, и в результате появляется новое поколение птиц, точно копирующих генетическую информацию родителей — форму, структуру, биохимию, физиологию, анатомию и даже трели.

В предыдущих главах мы неоднократно говорили о том, что не можем быть на 100 % уверенными, что все явления, описанные в этой книге, можно объяснить с точки зрения квантовой механики. Однако не вызывает сомнений тот факт, что чудесные и уникальные свойства малиновки, рыбы-клоуна, бактерий, которые выжили под антарктическим льдом, динозавров, которые бродили в лесах юрского периода, бабочки-монарха, дрозофил, растений и микробов и нас, людей, берут начало в квантовом мире. Многое остается непознанным и неоткрытым. Но прелесть любой новой области исследований заключается в абсолютной неизвестности. Ведь как говорил Исаак Ньютон: «Не знаю, каким видит меня мир, но себе я кажусь мальчиком, который играет на морском берегу, развлекаясь тем, что время от времени подбирает камешек поглаже, раковину покрасивее, в то время как великий океан Истины неизведанный лежит передо мной».

Об авторах

Джим Аль-Халили — профессор, кавалер ордена Британской империи, академик, автор книг и участник научно-популярных передач. Джим Аль-Халили — ведущий физик-теоретик, работающий в университете Суррея, занимающийся исследованиями в сфере квантовой механики и преподавательской деятельностью. Автор бестселлера «Парадокс. Девять великих загадок физики» (СПб.: Питер, 2015).

Джонджо Макфадден — профессор молекулярной генетики в Суррейском университете, научный редактор ведущих учебных пособий по молекулярной биологии и системной биологии туберкулеза. Более десяти лет занимается исследованиями туберкулеза и менингита, изобрел успешный молекулярный тест для диагностики менингита. За свои открытия удостоен премии Вольфсона от Королевского научного общества Великобритании. Автор и соавтор нескольких научно-популярных книг. Макфадден регулярно публикует в газете Guardian научно-популярные статьи — в частности, о генномодифицированных растениях, психоделических препаратах и квантовой механике.

[1]Atkins P. W. Magnetic field effects // Chemistry in Britain, 1976. — № 12. — P. 214.

[2]Emlen S., Wiltschko W., Demong N. and Wiltschko R. Magnetic direction finding: evidence for its use in migratory indigo buntings // Science, 1976. — № 193. — P. 505–508.

[3]В науке принято относить детерминистские физические теории, которые предшествовали квантовой механике (в том числе специальную и общую теории относительности), к классической физике в отличие от неклассической квантовой механики. — Здесь и далее примеч. авт.

[4]Все же неправильно полагать, что туннельный эффект подразумевает преодоление барьеров физическими волнами; способность квантовой частицы в одно мгновение оказаться по другую сторону барьера описывается абстрактными математическими моделями волн. В этой книге мы будем стараться приводить аналогии квантовых явлений, интуитивно понятные читателям, однако реальность такова, что квантовая механика чрезвычайно контринтуитивна, поэтому авторы рискуют слишком упростить некоторые аналогии, пусть и с благородной целью максимально ясного изложения.

[5]Все химические элементы имеют разновидности атомов, называемые изотопами. Отдельный элемент выделяется на основе количества протонов в ядре его атомов: атомные ядра водорода содержат один протон, ядра гелия — два и т. д. Однако количество нейтронов, содержащихся в ядре, может варьироваться. Так, водород имеет три разновидности (изотопа): обычно в атоме водорода содержится только протон, а более тяжелые изотопы — дейтерий и тритий — имеют в ядре, кроме протона, один или два нейтрона соответственно.

[6]Строго говоря, дейтрон обязан своей стабильностью одному из свойств ядерных сил. Протон и нейтрон связываются благодаря тензорному взаимодействию, которое вынуждает эту пару частиц находиться в квантовой суперпозиции двух одновременных моментов импульса — S-волны и D-волны.

[7]Следует оговориться, что специалисты в области квантовой физики не пользуются таким упрощенным языком. Правильнее будет сказать, что две удаленные, но запутанные частицы сохраняют нелокальную взаимозависимость потому, что являются частями одного и того же квантового состояния. Однако такая формулировка мало что проясняет, не правда ли?

[8]Поскольку свет — это не только частицы, но и волна, поляризацию (в отличие от квантового спина) гораздо проще понимать как направление, в котором распространяется волна.

[9]И вновь мы во многом упрощаем язык изложения, чтобы читатель мог себе представить описываемое максимально ясно. Измерение определенного свойства квантовой частицы (например, ее положения) означает, что у нас больше нет неопределенности относительно этого свойства — оно попадает в центр нашего внимания и перестает быть туманным, неясным. Однако это не означает, что отныне, с измеренным и описанным нами свойством, частица начинает вести себя традиционно, в рамках классической физики. Согласно принципу неопределенности Гейзенберга частица больше не имеет фиксированной скорости. На самом деле частица в определенном положении будет в тот момент времени находиться в состоянии суперпозиции, двигаясь одновременно со всеми возможными скоростями и во всех возможных направлениях. Что касается квантового спина, поскольку это свойство присуще только объектам микромира, его измерение точно не заставит частицу вести себя подобно объекту классической механики.

[10]Во второй половине XIX века шотландский физик Джеймс Клерк Максвелл доказал, что электрические и магнитные силы представляют собой проявления одной и той же силы — электромагнетизма.

[11]Имеется в виду стол для игры в американский бильярд, или пул.

[12]Свободная энергия — одно из важнейших понятий термодинамики, содержание которого описание, приведенное в данной главе, иллюстрирует достаточно точно.

[13]Стоит отметить, что некоторые биохимики того времени были виталистами.

[14]Как ни странно, в то время эксперименты Эвери не были приняты учеными в качестве достаточного доказательства того, что генетическим материалом является именно ДНК. Споры об этом разгорелись с новым жаром лишь во времена Крика и Уотсона.

[15]Каждый нуклеотид состоит из азотистого основания, в структуру которого входят углерод, азот, кислород и водород, а также хотя бы одной фосфатной группы. Все эти соединения закреплены на длинной нити ДНК.

[16]Один микролитр равен одному миллиметру кубическому.

[17]Harris S. Chemical potential: turning carbon dioxide into fuel // The Engineer, 2012. — 9 August. — http://www.theengineer.co.uk/energy-and-environment/in-depth/chemical-potential-turning-carbon-dioxide-into-fuel/1013459.article#ixzz2upriFA00.

[18]Кстати, отношение энергии и частоты излучения выражено в уравнении, предложенном Максом Планком в 1900 году: E = ħω, где E — энергия, ω — частота, а ħ — величина, получившая название «постоянная Планка». Из уравнения видно, что величина энергии прямо пропорциональна показателю частоты.

[19]Этот процесс называют редукцией или коллапсом волновой функции. В современных работах под этим понятием подразумевается изменение математического описания электрона, а вовсе не физическое разрушение настоящей волны.

[20]Именно Макс Борн предложил вероятностную интерпретацию волновой функции Шредингера.

[21]Die Naturwissenschaften, 1932. — Vol. 20. — P. 815–821.

[22]Jordan Pascual, 1938, цит. по: Galison P., Gordin M. and Kaiser D., eds. Quantum Mechanics: Science and Society. — London: Routledge, 2002. — P. 346.

[23]Данный закон записывается уравнением PV = nRT, где n — количество молей газа, R — газовая постоянная, P — давление, V — объем газа и T — температура.

[24]Murphy M. P. and O’Neil L. A. J., eds. What is Life? The Next Fifty Years: Speculations on the Future of Biology. — Cambridge: Cambridge University Press, 1995.

[25]Longuet-Higgins H. C. Quantum mechanics and biology // Biophysical Journal, 1962. — Vol. 2. — P. 207–215.

[26]Feynman R. P., Leighton R. B. and Sands M. L. The Feynman Lectures on Physics. — Reading, MA: Addison-Wesley, 1964. — Vol. 1. — P. 3–6.

[27]Приставка нано- означает одну миллиардную часть метра.

[28]Schweitzer M. H., Suo Z., Avci R., Asara J. M., Allen M. A., Arce F. T. and Horner J. R. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein // Science, 2007. — Vol. 316: 5822. — P. 277–280.

[29]Дрожжи — это одноклеточные грибы.

[30]Gross J. How tadpoles lose their tails: path to discovery of the first matrix metalloproteinase // Matrix Biology, 2004. — Vol. 23: 1. — P. 3–13.

[31]Lienhard G. E. Enzymatic catalysis and transition-state theory // Science, 1973. — Vol. 180: 4082. — P. 149–154.

[32]Разумеется, есть несколько очень важных исключений: прежде всего, такие соединения, как кислород, — они постоянно вступают в реакции, однако их запас на нашей планете не иссякает благодаря регулярным процессам, связанным в основном с жизнедеятельностью живых организмов, например растений, выделяющих кислород в атмосферу.

[33]Исходные вещества реакции принято называть веществами, участвующими в реакции, или реагирующими веществами. Однако, если в реакции участвует катализатор (например, фермент), исходное вещество называют субстратом.

[34]Названия многих ферментов начинаются с наименования вещества (субстрата), разрушающегося в ходе реакции, и оканчиваются на — аза. Таким образом, коллагеназа — это фермент, расщепляющий коллаген.

[35]Этот тип связи относится к ковалентной связи.

[36]Ионом называют атом или молекулу с электрическим зарядом, который является результатом утраты электронов (положительно заряженный ион) или их приобретения (отрицательно заряженный ион).

[37]Tallant C., Marrero A. and Gomis-Ruth F. X. Matrix metalloproteinases: fold and function of their catalytic domains // Biochimica et Biophysica Acta (Molecular Cell Research), 2010. — Vol. 1803: 1. — P. 20–28.

[38]Kirby A. J. The potential of catalytic antibodies // Acta Chemica Scandinavica, 1996. — Vol. 50: 3. — P. 203–210.

[39]Как вы помните из главы 2, органеллы — это «органы» клетки, ее внутренние структуры, выполняющие определенные функции, например функцию дыхания.

[40]DeVault Don and Chance Britton. Studies of photosynthesis using a pulsed laser: I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling // BioPhysics, 1966. — Vol. 6. — P. 825.

[41]Большинство ученых пользуются единицей температуры К (кельвин). Изменение температуры на 1 К соответствует изменению на 1 °C. Начало шкалы температуры в кельвинах совпадает с абсолютным нулем, которому по шкале Цельсия соответствует температура –273 °C. Так, например, температура человеческого тела равна 310 К.

[42]Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling // Proceedings of the National Academy of Sciences, 1974. — Vol. 71. — P. 3640–3644.

[43]Возможно, у вас возникнет вопрос: зачем объяснять процессы слияния протонов внутри Солнца в терминах квантового туннелирования? Однако даже невероятно высокой внутрисолнечной температуры и давления недостаточно для того, чтобы два положительно заряженных протона преодолели электрическое отталкивание и слились в одно ядро. В таком случае на помощь приходит квантовая механика.

[44]Cha Yuan, Murray Christopher J. and Klinman Judith. Hydrogen tunneling in enzyme reactions // Science, 1989. — Vol. 243: 3896. — P. 1325–1330.

[45]Masgrau L., Basran J., Hothi P., Sutcliffe M. J. and Scrutton N. S. Hydrogen tunneling in quinoproteins // Archives of Biochemistry and Biophysics, 2004. — Vol. 428: 1. — P. 41–51; Masgrau L., Roujeinikova A., Johannissen L. O., Hothi P., Basran J., Ranaghan K. E., Mulholland A. J., Sutcliffe M. J., Scrutton N. S. and Leys D. Atomic description of an enzyme reaction dominated by proton tunneling // Science, 2006. — Vol. 312: 5771. — P. 237–41.

[46]Glowacki David R., Harvey Jeremy N. and Mulholland Adrian J. Taking Ockham’s razor to enzyme dynamics and catalysis // Nature Chemistry, 2012. — Vol. 4. — P. 169–76.

[47]Из телесериала ВВС Fun to Imagine 2: Fire (1983), видео доступно по ссылке YouTube: http://www.youtube.com/watch?v=ITpDrdtGAmo.

[48]Интервью CBC News доступно по ссылке: http://www.cbc.ca/news/technology/quantum-weirdness-used-by-plants-animals-1.912061.

[49]Биения представляют собой колебания громкости — своего рода пульсацию, которая образуется двумя нотами практически одинаковой частоты и, таким образом, почти созвучными. Не следует путать биения с ритмом.

[50]Щели действительно должны быть очень узкими и располагаться очень близко друг к другу. В опытах, которые проводили в 1990-е годы, экран представлял собой лист золотой фольги, а ширина щелей составляла порядка одного микрометра (одной тысячной миллиметра).

[51]Мы допускаем, что датчик имеет 100 %-ную эффективность и точно дает нам знать, что атом проходит через щель, не влияя при этом на траекторию атома. Разумеется, на практике это невозможно, так как мы посредством наблюдения неизбежно нарушим путь прохождения атома, как мы увидим далее.

[52]Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mancal T., Cheng Y.-C., Blankenship R. E. and Fleming G. R. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems // Nature, 2007. — Vol. 446. — P. 782–786.

[53]Фемтосекунда равна одной миллионной от одной миллиардной секунды, или 10–15 секунд.

[54]Задача странствующего моряка состоит в том, чтобы найти кратчайший путь, проходящий через несколько городов. Математически это описывается как задача недетерминированной полиномиальной сложности: это одна из задач, для которых не существует короткого решения, даже теоретического. Единственным способом найти оптимальное решение является полный перебор всех возможных маршрутов с множеством вычислений.

[55]Mercer I. P., El-Taha Y. C., Kajumba N., Marangos J. P., Tisch J. W. G., Gabrielsen M., Cogdell R. J., Springate E. and Turcu E. Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing // Physical Review Letters, 2009. — Vol. 102: 5.

[56]Collini E., Wong C. Y., Wilk K. E., Curmi P. M., Brumer P. and Scholes G. D. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature // Nature, 2010. — Vol. 463: 7281. — P. 644–647.

[57]Panitchayangkoon G., Hayes D., Fransted K. A., Caram J. R., Harel E., Wen J., Blankenship R. E. and Engel G. S. Long-lived quantum coherence in photosynthetic complexes at physiological temperature // Proceedings of the National Academy of Sciences, 2010. — Vol. 107: 29. — P. 12 766–12 770.

[58]Calhoun T. R., Ginsberg N. S., Schlau-Cohen G. S., Cheng Y. C., Ballottari M., Bassi R. and Fleming G. R. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II // Journal of Physical Chemistry B, 2009. — Vol. 113: 51. — P. 16 291–16 295.

[59]Когда мы говорим «сгорание воды», мы, конечно, не имеем в виду, что вода является топливом, как уголь, но мы свободно используем этот термин для описания молекулярного процесса окисления.

[60]Тут мы должны сделать оговорку: квантовая механика все еще не может объяснить силу тяготения, так как теория относительности (под которой мы понимаем гравитацию) несовместима с квантовой механикой. Объединение квантовой механики и теории относительности для построения квантовой теории гравитации остается одной из величайших задач современной физики.

[61]К сожалению, популярность этого фильма привела к тому, что сохранение рыб-клоунов в дикой природе оказалось под угрозой. Рыбы-клоуны стали излюбленной добычей браконьеров, которые продают любителям аквариумов амфиприонов в больших количествах. Не нужно держать Немо у себя дома! Помните: настоящий дом амфиприонов — коралловый риф!

[62]Считается, что при сильных приливах нерест облегчается.

[63]Исход, гл. 30, 34–5.

[64]Цит. по: Le Guerer A. Scent: The Mysterious and Essential Power of Smell. — N.Y.: Kodadsha America Inc., 1994. — P. 12.

[65]1-метил-4-(1-метилэтиленил) — циклогексен.

[66]1 пикоампер равен 10–12 ампер.

[67]Eisner R. Richard Axel: one of the nobility in science // P & S Columbia University College of Physicians and Surgeons, 2005. — Vol. 25: 1.

[68]В данном контексте экспрессия означает активность гена в процессе преобразования информации в РНК, которая запускает механизм синтеза белка, кодируемого данным геном, например фермента или обонятельного рецептора.

[69]Традиционно мускус получали из нескольких естественных источников, в том числе половых желез мускусного оленя, лицевых желез мускусного быка, испражнений лесной куницы и мочи барсука. Тем не менее в наше время в парфюмерии применяется только синтетический мускус.

[70]Sell C. S. On the unpredictability of odor // Angewandte Chemie, International Edition (English), 2006. — Vol. 45: 38. — P. 6254–6261.

[71]Хиральные молекулы не совмещаются в пространстве со своим зеркальным отражением.

[72]Если быть точными, Хендрикс играл на обычной гитаре, перевернув ее в другую сторону и переставив струны так, что ми большой октавы оказывалась нижней струной, как и на левосторонней гитаре.

[73]Mori K. and Shepherd G. M. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb // Seminars in Cell Biology, 1994. — Vol. 5: 1. — P. 65–74.

[74]Например, (4S,4aS,8aR)-(K) — геосмин и его зеркальный изомер (4R,4aR,8aS)-(C) — геосмин имеют одинаковый специфический запах сырой земли.

[75]Turin L. The Secret of Scent: Adventures in Perfume and the Science of Smell. — London: Faber & Faber, 2006. — P.4.

[76]Turin L. A spectroscopic mechanism for primary olfactory reception // Chemical Senses, 1996. — Vol. 21: 6. — P. 773–791.

[77]Turin. The Secret of Scent. — P. 176.

[78]Burr C. The Emperor of Scent: A True Story of Perfume and Obsession. — N.Y.: Random House, 2003.

[79]Keller A. and Vosshall L. B. A psychophysical test of the vibration theory of olfaction // Nature Neuroscience, 2004. — Vol. 7: 4. — P. 337–338.

[80]От термина «аносмия», обозначающего отсутствие способности различать запахи. Приобретенная аносмия обычно связана с поражением назального эпителия. Врожденная аносмия встречается редко.

[81]Franco M. I., Turin L., Mershin A. and Skoulakis E. M. Molecular vibration-sensing component in Drosophila melanogaster olfaction // Proceedings of the National Academy of Science, 2011. — Vol. 108: 9. — P. 3797–3802.

[82]Brookes J. C., Hartoutsiou F., Horsfield A. P. and Stoneham A. M. Could humans recognize odor by phonon assisted tunneling? // Physical Review Letters, 2007. — Vol. 98: 3.

[83]Urquhart F. A. Found at last: the monarch’s winter home // National geographic. — Aug. 1976.

[84]Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M. and Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila // Cell, 1998. — Vol. 95: 5. — P. 681–692.

[85]Zhu H., Sauman I., Yuan Q., Casselman A., Emery-Le M., Emery P. and Reppert S. M. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation // PLOS Biology, 2008. — Vol. 6: 1.

[86]Reppert D. M., Gegear R. J. and Merlin C. Navigational mechanisms of migrating monarch butterflies // Trends in Neurosciences, 2010. — Vol. 33: 9. — P. 399–406.

[87]Guerra P. A., Gegear R. J. and Reppert S. M. A magnetic compass aids monarch butterfly migration // Nature Communications, 2014. — Vol. 5: 4164. — P. 1–8.

[88]Middendorf A. T. von. Die Isepiptesen Russlands Grundlagen zur Erforschung der Zugzeiten und Zugrichtungen der Vögel Russlands. — St Petersburg, 1853.

[89]Yeagley H. L. and Whitmore F. C. A preliminary study of a physical basis of bird navigation // Journal of Applied Physics, 1947. — Vol. 18: 1035.

[90]Walker M. M., Diebel C. E., Haugh C. V., Pankhurst P. M., Montgomery J. C. and Green C. R. Structure and function of the vertebrate magnetic sense // Nature, 1997. — Vol. 390: 6658. — P. 371–376.

[91]Hanzlik M., Heunemann C., Holtkamp-Rotzler E., Winklhofer M., Petersen N. and Fleissner G. Superparamagnetic magnetite in the upper beak tissue of homing pigeons // Biometals, 2000. — Vol. 13: 4. — P. 325–331.

[92]Mora C. V., Davison M., Wild J. M. and Walker M. M. Magnetoreception and its trigeminal mediation in the homing pigeon // Nature, 2004. — Vol. 432. — P. 508–511.

[93]Treiber C., Salzer M., Riegler J., Edelman N., Sugar C., Breuss M., Pichler P., Cadiou H., Saunders M., Lythgoe M., Shaw J. and Keays D. A. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons // Nature, 2012. — Vol. 484. — P. 367–370.

[94]Не путать с Эмленом Таннелом, великим американским футболистом 1950-х годов.

[95]Emlen S. T., Wiltschko W., Demong N. J., Wiltschko R. and Bergman S. Magnetic direction finding: evidence for its use in migratory indigo buntings // Science, 1976. — Vol. 193: 4252. — P. 505–508.

[96]Pollack L. That nest of wires we call the imagination: a history of some key scientists behind the bird compass sense. — May 2012. — P. 5: http://www.ks.uiuc.edu/History/magnetoreception.

[97]Pollack L. That nest of wires we call the imagination: a history of some key scientists behind the bird compass sense. — May 2012, p. 6.

[98]Schulten K., Staerk H., Weller A., Werner H.-J. and Nickel B. Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents // Zeitschrift für Physikale Chemie, 1976. — Vol. 101. — P. 371–390.

[99]Pollack L. That nest of wires we call the imagination. — P. 11.

[100]Schulten K., Swenberg C. E. and Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion // Zeitschrift für Physikale Chemie, 1978. — Vol. 111. — P. 1–5.

[101]Термин «триплетный» здесь может ввести в заблуждение неспециалиста в квантовой механике, тем более что речь идет о паре электронов, так что здесь необходимо краткое пояснение: считается, что электрон имеет спин 1/2. Так, когда пара электронов имеют противоположные спины, эти значения в сумме дают ноль (1/2 — 1/2 = 0). Это касается синглетного спинового состояния. Но когда их спины однонаправленны, эти значения складываются (1/2 + 1/2 = 1). Термин «триплетный» относится к тому, что комбинированный спин 1 может быть в трех возможных направлениях (по полю, против поля, в сторону).

[102]Два неспаренных электрона в молекуле кислорода, которые держат два атома вместе, обычно находятся в триплетном состоянии.

[103]From Hore P. The quantum robin // Navigation News. — Oct. 2011.

[104]Lambert N. Quantum biology // Nature Physics, 2013. — Vol. 9: 10. И источники, упомянутые в данном издании.

[105]Leask M. J. M. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons // Nature, 1977. — Vol. 267. — P. 144–145.

[106]Ritz T., Adem S. and Schulten K. A model for photoreceptor-based magnetoreception in birds // Biophysical Journal, 2000. — Vol. 78: 2. — P. 707–718.

[107]Liedvogel M., Maeda K., Henbest K., Schleicher E., Simon T., Timmel C. R., Hore P. J. and Mouritsen H. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radicalpairs // PLOS One, 2007. — Vol. 2: 10.

[108]Куры, конечно, не мигрируют, даже в дикой природе. Но они, оказывается, по-прежнему сохранили способность к магниторецепции.

[109]Nießner C., Denzau S., Stapput K., Ahmad M., Peichl L., Wiltschko W. and Wiltschko R. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds // Journal of the Royal Society Interface, 2013. — Nov. 6. — Vol. 10: 88.

[110]Ritz T., Thalau P., Phillips J. B., Wiltschko R. and Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass // Nature, 2004. — Vol. 429. — P. 177–180.

[111]Engels S., Schneider N.-L., Lefeldt N., Hein C. M., Zapka M., Michalik A., Elbers D., Kittel A., Hore P. J. and Mouritsen H. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird // Nature, 2014. — Vol. 509. — P. 353–356.

[112]Gauger E. M., Rieper E., Morton J. J., Benjamin S. C. and Vedral V. Sustained quantum coherence and entanglement in the avian compass // Physical Review Letters, 2011. — Vol. 106: 4.

[113]Ahmad M., Galland P., Ritz T., Wiltschko R. and Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana // Planta, 2007. — Vol. 225: 3. — P. 615–624.

[114]Vacha M., Puzova T. and Kvicalova M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach // Journal of Experimental Biology, 2009. — Vol. 212: 21. — P. 3473–3477.

[115]По новым данным, в 2010 году в том же районе было уже менее 93°: https://ru.wikipedia.org/wiki/Полюсы_холода. — Примеч. пер.

[116]Дно ледника, непосредственно накрывающего озеро, образовалось более чем 400 тысяч лет назад, однак

Наши рекомендации