Связь между геном и признаком

Гены определяют признаки организма по схеме: ген 6 белок 6 признак. Однако такая простая связь реализуется редко: обычно признак является интегрированным результатом нескольких процессов или метаболических реакций, и в его реализации принимают участие несколько белков - продуктов разных генов.

Кроме того, и экспрессия генов, и активность белков зависят от условий среды, в которой находится организм, и, следовательно, проявление признаков тоже зависит от среды.

Окраска животных - один из примеров, когда путь передачи генетической информации от ДНК к признаку организма расшифрован. Почти все позвоночные обязаны своїй окраской меланинам. Меланины существуют в двух формах: черные - эумеланины и желтые - феомеланины. Образуются меланины в организме из аминокислоты фенилаланина в результате длинной линейной цепочки ферментативных реакций. На первом этапе фермент фенилаланингидроксилаза превращает фенилаланин в аминокислоту тирозин.

Следующий фермент - тирозиназа - превращает тирозин в следующий продукт и т.д. Окраска шкуры млекопитающих зависит не только от наличия разных форм меланинов, но и от распределе- ния этих пигментов по длине волоса, котторое тоже находится под контролем генов. В типичном волосе окраска распределяется зонами: кончик черный (много эумеланина), далее идет желтая зона (феомеланин), снова черная (эумеланин), а основание белое, лишенное пигментов. Такой тип окраски волоса, чаще всего встречающийся у диких животных, называется типом агути (по имени южноамериканского грызуна, у которого он четче всего выражен). Каждая зона окраски контролируется своим геном, и наследственное смещение и расширение зон приводит к изменению окраски. Сердцевина волоса (мякотный слой) и наружная его часть (корковый слой) окрашиваются под управлением еще одного гена. В тех. случаях, когда черная сердцевина волоса просвечивает через неокрашенную оболочку, волос кажется голубым, например, у голубых песцов. Аналогично от количества, распределения и состава меланинов в радужной оболочке зависит цвет глаз.

Фермент тирозиназа кодируется геном С (от англ. colour - цвет). Если в этом гене возникает мутация, вызывающая полную инактивацию фермента, то меланины из тирозина не образуются и получаются животные альбиносы, волосяной и кожный покровы которых неокрашены, а через бесцветную радужную оболочку глаза просвечивают кровеносные сосуды, в результате чего глаза выглядят красными. Напротив, если активность тирозиназы повышена в результате мутации, усиливающей экспрессию гена С, то получаются животные меланисты - темные, прктически черные, например, черные пантеры. Мутации, затрагивающие гены, которые контролируют время и место экспрессии гена С, приводят к появлению неполных альбиносов - пегих, с окрашенными глазами и полостью рта.

Разновидность гена С, обозначаемая как Сh, кодирует тирозиназу с неустойчивой пространственной структурой молекулы: она теряет активность при 37оС. В этом случае меланин образуется только на охлажденных участках тела: у белых горностаевых кроликов на ушах, хвостах и лапах вырастает черная шерсть, то же происходит и у сиамских кошек.

Если выбрить у горностаевого кролика участок кожи на боку и прикладывать к нему лед, то шерсть на этом месте вырастет черная. Термочувствительная тирозиназа определяет сезонную смену окраски меха и перьев у зайцев, горностаев, белых куропаток и других животных. Летом, при повышенной температуре, тирозиназа не работает. Поэтому в клетках, где идет синтез волос или перьев, меланин не накапливается, и осенью, после линьки, отрастают белые мех. и перья. Зимой покровы охлаждены, тирозиназа активна, и после весенней линьки отрастают окрашенные шерсть и перья.

Тяжелая наследственная болезнь - фенилкетонурия - возникает в результате мутации, которая инактивирует ген, ответственный за синтез фермента фенилаланингидроксилазы, который предшествует тирозиназе в цепи синтеза меланина и превращает фенилаланин в тирозин. Образование из фенилаланина - это не единственный источник тирозина в организме, и тирозиназа находит тирозин для синтеза меланина. Однако больные фенилкетонурией имеют бледную кожу и обесцвеченные волосы. Такой неполный альбинизм является следствием того, что приток "сырья" для синтеза меланина резко уменьшен, и, кроме того, накапливающийся избыток фенилаланина ингибирует (не полностью подавляет) активность тирозиназы. Избыток фенилаланина приводит также к накоплению его производных - кислот с фенольным ядром, которые поражают центральную нервную систему, что приводит к неизлечимому слабоумию. Такое явление, когда один ген может оказывать влияние на несколько признаков (неполный альбинизм, слабоумие и др.), называется плеотропией.

Конечный результат фенотипического проявления гена зависит и от условий среды и от действия других генов. Одни гены почти не проявляют изменчивости в своїм фенотипическом выражении, тогда как для проявления других генов характерна высокая степень изменчивости. Изменчивость может быть обусловлена как тем, что не все особи, имеющие данный генотип, имеют соответствующий ему фенотип, так и тем, что степень проявления фенотипа различна у различных особей. Пенетрантность гена - это доля особей, у которых проявляется ожидаемый фенотип. Экспрессивность гена - это степень выраженности фенотипа у тех особей, у которых он проявился. Многие гены имеют посную пенетрантность и экспрессивность: например, нормальный ген С, ответственный за синтез активной тирозиназы. Однако люди, носители гена некоторых генетических болезней (например хореи Гентингтона), заболевают в разном возрасте (варьирующая экспрессивность) или не заболевают вовсе (неполная пенетрантность). Причинами варьирующей экспрессивности и неполной пенетрантности может быть влияние внешней среды (например, богатая питательная среда для микроорганизма с ауксотрофной мутацией) и(или) генотипа.

11. Полуконсервативный способ репликации ДНК. Биологическое значение.

Полуконсервативный механизм репликации ДНК. Перед каждым делением клетки в ней должно удвоиться содержание ДНК, чтобы каждая дочерняя клетка получила полный набор хромосом. Основу каждой хромосомы образует одна двухцепочечная молекула ДНК. Предложенная Дж. Уотсоном и Ф. Криком модель строения ДНК форме регулярной двойной спирали сразу же позволила понять принцип копирования ДНК. Ее репликация происходит полуконсервативным способом: две исходные цепи материнской ДНК расходятся, и каждая из них становится матрицей для синтеза новой комплементарной цепи. Таким образом, каждая новая двойная спираль ДНК содержит одну старую и одну новую цепь. Такой механизм репликации ДНК, при котором от одного поколения к другому передается одна из двух материнский цепей ДНК, получил название полуконсервативного и был экспериментально доказан в 1958 году М. Мезельсон и Ф. Сталь.

Легко представить, что удвоение ДНК происходит вследствие того, что цепи расходятся и каждая цепь служит матрицей для синтеза новой комплементарной цепи ДНК. Каждая дочерняя молекула состоит из одной старой материнской и одной новой синтезированной цепи ДНК.
Общие принципы репликации ДНК.

В основе процесса репликации лежит принцип копирования материнской цепи ДНК с образованием двух идентичных молекул ДНК. В основе синтеза новой цепи ДНК лежит принцип комплементарности азотистых оснований, т.е. последовательность нуклеотидов материнской цепи определяет последовательность нуклеотидов в синтезируемой цепи ДНК

Синтез новых цепей ДНК идет в направлении 5’ → 3’.

В основе репликации ДНК лежат принципы антипараллельности и униполярности. Синтез новых цепей ДНК идет в направлении от 5’-конца к 3’ - концу, при этом ДНК-полимеразы – ферменты, синтезирующие новые цепи ДНК, - добавляют нуклеотиды к 3’- концу наращиваемой цепи ДНК. При этом матричная цепь имеет противоположную ориентацию: 3’ → 5’, т.е. ДНК-полимеразы могут передвигаться вдоль матрицы только в направлении от 3’ к 5’-концам.

12. Генетический код и его свойства.

Генетический код – единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв А, Т, Ц, Г, соответствующих нуклеотидам ДНК. Поскольку в белках встречается 20 различных аминокислот, то каждая не может кодироваться одним или двумя нуклеотидами (будет закодировано только 42=16 аминокислот). Наименьшая возможная длина «слова», определяющая аминокислоту, состоит из трех нуклеотидов (число возможных триплетов равно 43=64). Из 64 кодонов три – УАА, УАГ, УГА – не кодируют аминокислот, они были названы нонсенс-кодонами. Позднее было показано, что они являются терминирующими кодонами (ТК).
Начало экспериментальному анализу природы генетического кода положили М. Ниренберг и Дж. Маттеи в 1961 г. Они создали простейшие синтетические полимеры типа иРНК.


Свойства генетического кода:

• Генетический код триплетен. Триплет (кодон) – последовательность трех нуклеотидов, кодирующая одну аминокислоту.

• Вырожденность генетического кода обусловлена тем, что одна аминокислота может кодироваться несколькими триплетами (аминокислот 20, а триплетов –64), исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Три триплета ТК– это стоп-сигналы, прекращающие синтез полипептидной цепи.

Триплет, соответствующий метионину (АУГ), выполняет функцию инициирования (возбуждения) считывания и не кодирует аминокислоту, если стоит в начале цепи ДНК.

• Однозначность – каждому данному кодону соответствует одна и только одна определенная аминокислота. Следует отчетливо понимать принципиальное отличие двух важнейших свойств – вырожденности и однозначности, одновременно присущих генетическому коду.

• Код не перекрывается, т.е. в последовательности оснований АБВГДЕЖЗИК первые три основания, АБВ, кодируют аминокислоту 1, ГДЕ – аминокислоту 2 и так далее. Если бы код был перекрывающимся, то кислоту 2 могла бы кодировать последовательность ВГД. В коде отсутствуют запятые, т.е. нет знаков, отделяющих один кодон от другого.

• Генетический код универсален, т.е. вся информация в ядерных генах для всех организмов, обладающих разным уровнем организации (например, бабочка, ромашка, рак, лягушка, удав, орел, человек), кодируется одинаково.

13. Экспрессия генетической информации. Основные этапы: транскрипция, трансляция. Особенности транскрипции у эукариот. Регуляция экспрессии генов.

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид. Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

Молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны. В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Основные этапы биосинтеза белков:

1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называется сплайсинг.

Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность альтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.

3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

В основном, механизмы транскрипции у эукариот сходны с хорошо исследованной транскрипцией прокариот. Однако, имеются и значительные различия. Главными из них являются:

1. Транскрипция у эукариот происходит в ядре с участием трех разных РНК-полимераз. В отличие от прокариот, РНК-транскрипты у эукариот не соединяются с рибосомами до завершения транскрипции. Трансляция (синтез белка) на иРНК происходит после ее выхода из ядра в цитоплазму клетки.

2. Ни одна из полимераз эукариот не способна самостоятельно связываться с промоторами транскрибируемых ими генов. Для присоединения к транскриптонам эукариот служат специфичные для каждой РНК-полимеразы белковые факторы транскрипции (TF-факторы). РНК-полимеразы I, II и III требуют участия факторов транскрипции, называемых TFI, TFII, TFIII соответственно.

3. Первичный РНК-транскрипт подвергается процессингу или созреванию: обычно к 5׳-концу добавляется кэп (шапочка), а к 3׳-концу – хвост (поли (А)-фрагмент), внутренняя последовательность РНК подвергается сплайсингу. Первичные транскрипты (пре-мРНК) намного длиннее зрелых мРНК и локализованы в ядре клетки, образуя группу гетерогенных ядерных РНК (гя РНК). Укорочение происходит за счет вырезания не кодирующих белка последовательностей и сшивания смысловых последовательностей (сплайсинг).

Процесс транскрипции состоит из трех этапов: инициации, элонгации и терминации.

14. Геномный уровень организации наследственного материала. Эволюция генома.

Геном человека - это полная генетическая система, ответственная за происхождение, развитие, воспроизводство и наследование всех структурных и функциональных особенностей организма.
Структурной и функциональной единицей генома является ген.

Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида.

под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.

Генотип - совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие "геном" некодирующих последовательностей, не входящих в понятие "генотип"). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов.

Примером различия генотипа и фенотипа служит наследование гемофилии. Иногда в семье, в которой оба родителя здоровы, рождается больной ребёнок. То есть хотя болезнь не проявилась в фенотипе родителей, в их генотипе присутствовал один нормальный аллель и один мутированный аллель гена, то есть они являлись носителями заболевания. В данном случае фенотип здоровых людей и носителей заболевания одинаков.

Кариотип - совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Эволюция генома.

Геномика - наука, которая изучает структурно-функциональную организацию генома, представляющего собой совокупность генов и генетических элементов, определяющих все признаки организма. Термин геномика появился в 1987 году, а первый полный бактериальный геном был расшифрован в 1995 году. За прошедшие 14 лет определена нуклеотидная последовательность десятков геномов прокариот и эукариот и стало очевидным, что традиционные представления о филогении, базирующиеся на дарвинистических представлениях о дивергенции недостаточны для понимания генеалогии видов. Филогенетические деревья, построенные на основе молекулярного анализа гомологии отдельных генов, в частности, кодирующих рибосомальные РНК, позволяют судить о степени генетического родства организмов, но не дают однозначного ответа о происхождении и эволюционной судьбе многих генов. Дело в том, что "ветвление" таких деревьев по схеме бифуркации отражает только принцип вертикальной эволюции, в ходе которой наследуется базовый набор предковых ортологичных генов (сходных у разных организмов). В результате дупликаций, мутаций и рекомбинаций из них образуются паралогичные гены, (сходные в составе одного генома), которые увеличивают белковый арсенал и диапазон фенотипических вариаций, отражающих усложнение клеточных систем и регуляторных механизмов. В этом суть вертикальной эволюции "вверх". Другое ключевое направление эволюционного процесса связано с горизонтальным (латеральным) переносом генов между организмами, как близкородственными, так и филогенетически отдаленными, принадлежащими даже к разным царствам.

Эволюция прокариотического генома
По мере совершенствования и повышения надежности главных механизмов потока информации значение избыточной ДНК в повышении выживаемости организмов снижалась. В такой ситуаций одним из возможных направлений изменения генома было уменьшение его размеров за счет утраты некодирующих нуклеотидных последовательностей. Именно так можно представить эволюционный путь, пройденный геномом современных прокариот. Одновременно в качестве механизмов, поддерживающих выживаемость этих форм, в историческом развитии закреплялось свойственное им короткое время генерации, т.е. интенсивное размножение и быстрая смена поколений (кишечная палочка делится каждые 20 мин). Перечисленные особенности хорошо сочетаются с гаплоидностью прокариот, что приводит к воспроизведению в фенотипе любой мутации.

Экспрессия 95% ДНК, относительно малые размеры генома, гаплоидность, проявление в фенотипе практически каждой мутации в сочетании с коротким временем генерации обусловливают высокую приспособленность. Вместе с тем для прокариотического типа организации не свойственны обширные и разнообразные изменения структуры. Вследствие этого описанное направление эволюции, обеспечивая высокую способность к выживанию (прокариоты существуют на Земле около 3,5 млрд. лет), является тупиковым в плане прогрессивной эволюции живых существ.

Эволюция эукариотического генома
В отличие от изменений прокариотического генома преобразования генома в эволюции эукариот связаны с нарастающим увеличением количества ДНК. Это увеличение наблюдается в процессе прогрессивной эволюции эукариот . На фоне такого увеличения большая часть ДНК является «молчащей», т.е. не кодирует аминокислот в белках или последовательностей нуклеотидов в рРНК и тРНК. Даже в пределах одного гена молчащие (интроны) и кодирующие (экзоны) участки могут перемежаться. В составе ДНК обнаруживаются высоко и умеренно повторяющиеся последовательности. Вся масса ДНК распределена между определенным числом специализированных структур — хромосом. Хромосомы в отличие от нуклеоида прокариот имеют сложную химическую организацию. Эукариоты в большинстве случаев диплоидны. Время генерации у них значительно больше, чем у прокариот. Отмечаемые особенности, оформившиеся в ходе эволюции генома эукариот, допускают широкие структурные изменения и обеспечивают не только адаптивную (приспособительную), но и прогрессивную эволюцию.

Среди перечисленных выше моментов увеличение размеров генома в эволюции эукариот привлекает особое внимание. Этот процесс может осуществляться различными способами. Наиболее резко размер генома изменяется в результате полиплоидизации, которая достаточно широко распространена в природе. Она заключается в увеличении количества ДНК и хромосом, кратном гаплоидному. Достигаемое в результате состояние полиплоидии приводит к увеличению дозы всех генов и создает избыток «сырого» генетического материала, который впоследствии видоизменяется в результате мутаций и отбора.

15. Фенотип. Значение генетических факторов и среды в формировании фенотипа. Типы взаимодействия генов.

Фенотип (от греческого слова phaino — являю, обнаруживаю) — совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития.
Фенотип складывается в результате взаимодействия наследственных свойств организма-генотипа и условий среды обитания. В ядрах клеток содержится полученный от родителей набор хромосом, несущих совокупность генов, которые характерны для данного вида вообще и для данного организма в частности. Эти гены несут информацию о белках, которые могут синтезироваться в этом организме, а также о механизмах, определяющих сам синтез и его регуляцию . В процессе развития осуществляется последовательное включение генов и синтез тех белков, которые они кодируют (экспрессия генов). В результате происходит развитие всех признаков и свойств организма, которые и составляют его фенотип. Таким образом, фенотип — это продукт реализации той генетической программы, которая содержится в генотипе. Однако генотип не однозначно определяет фенотип — в большей или меньшей степени он зависит и от внешних условий. Иногда фенотипы в разных условиях отличаются крайне резко. Например, бабочка арашния дает в год два поколения новых бабочек. Весенние, вышедшие из перезимовавших куколок, очень сильно отличаются от бабочек с тем же генотипом, развивающихся летом (их раньше считали разными видами). Сосны в лесу высокие и стройные, а на открытом пространстве — развесистые. Форма листьев водяного лютика зависит от того, в воде или в воздухе оказался лист. Способность к изменениям фенотипа, предусмотренную генетической программой, называют нормой реакции. Обычно чем разнообразнее условия обитания вида, тем шире у него норма реакции. Если условия среды резко отличаются от тех, к которым вид приспособлен, развитие организма нарушается и он погибает. Рецессивные аллели не всегда отражаются в признаках фенотипа, но сохраняются и могут быть переданы потомству. Это важно знать для понимания механизма эволюции, так как естественный отбор действует только на фенотипы, а отбираются при этом, т. е. передаются потомству и остаются в популяции, генотипы. Взаимоотношение между генотипом и фенотипом не исчерпывается взаимодействием доминантных и рецессивных аллелей, а включает взаимодействие многих генов друг с другом. Механизмы этих взаимодействий в развитии организма, как и механизмы развития вообще, во многом непонятны. Но само разделение единого понятия о наследственности на два — генотип и фенотип, осуществленное фактически Г. Менделем было большим открытием в биологии.

Наши рекомендации