Морфология риккетсий и хламидий. морфология микоплa3m

Риккетсии и хламидии относятся к классу Rickettsia облигат-ных внутриклеточных паразитов, который делится на два порядка: Rickettsiales и Chlamidiales.

Риккетсии представляют собой мелкие грамотрицательные микроорганизмы, характеризующиеся выраженным полиморфизмом—образуют кокковидные, палочковидные и нитевидные формы (рис. 22). Размеры риккетсии варьируют от 0,5 до 3-4 мкм, длина нитевидных форм достигает 10—40 мкм. Спор и капсул не образуют, окрашиваются по Здродовскому в красный цвет.

2, Морфология фагов

Разные фаги отличаются друг от друга не только по форме, величине и сложности своей организации, но и по химическому составу. Оказалось, что фаги, лизирующие микроорганизмы различных групп, могут быть вполне идентичными по своей морфологии. В то же время фаги, активные против одной и той же культуры, могут резко различаться по своей структуре. Так, например, среди фагов, способных лизировать разные штаммы кишечной палочки, выявлены все известные морфологические типы фагов.

Частицы (или вирионы) большинства известных фагов имеют форму сперматозоида. Они состоят из головки (или капсида) и отростка. Наряду с этим есть фаги, которые состоят из одной головки, без отростка, и фаги, имеющие форму палочки (палочковидные или нитевидные фаги).

По форме частиц фаги делятся на шесть основных морфологических типов (групп): палочковидные или нитевидные фаги; фаги, состоящие из одной головки, без отростка; фаги, состоящие из головки, на которой имеется несколько небольших выступов; фаги, состоящие из головки и весьма короткого отростка; фаги, имеющие головку и длинный отросток, чехол которого не может сокращаться; фаги, имеющие головку и длинный отросток, чехол которого может сокращаться.

Лизогенная конверсия, фаговая конверсия, изменение свойств бактериальной клетки вследствие заражения её умеренным бактериофагом. Например, ряд штаммов дифтерийной палочки приобретает способность образовывать дифтерийный токсин сразу же после проникновения фага в клетку и до момента её растворения — лизиса. Если в результате инфекции происходит лизогенизация, т. е. включение умеренного фага в геном бактерии в форме профага, то вновь приобретённые свойства становятся наследственными.

Фаговая конверсия (лат. conversio изменение, превращение; син. лизогенная конверсия)

изменение фенотипа бактериальной клетки (антигенной характеристики, токсинообразования, чувствительности к другим фагам и т.п.), обусловленное включением в ее хромосому генома умеренного фага.

Билет 13

1,Аутотрофы (греч. autos - сам, trophic - питающийся) получают уг­лерод из углекислоты (СО2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

Гетеротрофы (греч. heteros - другой, trophic - питающийся) исполь­зуют сложные органические соединения, такие как углеводы, спирты, аминокислоты, органические кислоты. Среди гетеротрофных микро­организмов различают сапрофитов (греч. sapros - гнилой, phyton - рас­тение) и паразитов. Сапрофиты используют мертвые органические соединения. Они широко распространены в природе, разлагают органи­ческие вещества, отбросы, участвуя таким образом в санитарной очи­стке окружающей среды. Паразиты живут и размножаются в тканях человека, животных, растений.

Типы питания. Микроорганизмы нуждают­ся в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или живот­ных, относят к патогенным и условно-патогенным.

В зависимости от окисляемого субстрата, называемого доно­ром электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров во­дорода неорганические соединения, называют литотрофными (от греч. lithos — камень), а микроорганизмы, использую­щие в качестве доноров водорода органические соединения, — органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые во­доросли, использующие энергию света), и хемотрофы, нуж­дающиеся в химических источниках энергии.

Основным регулятором поступ­ления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения пи­тательных веществ в бактериальную клетку: это простая диффу­зия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ про­исходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазмати­ческой мембраны. Однако этот процесс осуществляется с помо­щью молекул-переносчиков, Облегченная диффузия протекает без затраты энер­гии, вещества перемещаются от более высокой концентрации к более низкой.

2, Реакция преципитации является очень чувствительным методом и ее применяют при исследовании различных белковых и полисахаридных антигенов в судебно- медицинской практике для определения видовой принадлежности пятен крови, спермы, сыворотки, имеющихся на белье и различных предметах. Эту реакцию можно также использовать для выявления различных примесей к молоку, рыбным и мясным продуктам, определения природы белков, входящих в краски старинных мастеров живописи. В отличие от реакции агглютинации антигеном для реакции преципитации служат растворимые соединения, величина частичек которых приближается к размерам молекул. Это могут быть белки, комплексы белков с углеводами и липидами, бактериальные экстракты, различные дизаты или фильтраты бульонных культур микробов. Антитела, участвующие в реакции преципитации, называют преципитинами. Образующийся мелкодисперсный комплекс антиген — антитело выявляется при определенных методах постановки реакции преципитации.


Реакция кольцепреципитации предложена впервые Асколи. Ее используют при диагностике сибирской язвы, чумы, туляремии, менингита. Метод прост и доступен.
В узкие преципитационные пробирки разливают специфическую иммунную преципитирующую сыворотку и на нее очень осторожно наслаивают антиген. В качестве антигена берут, например, при диагностике сибирской язвы кусочки кожи, шерсти, шкуры павшего животного и др. Их кипятят, жидкость фильтруют и используют как антиген. Появление на границе двух жидкостей кольца — преципитата свидетельствует о наличии соответствующего антигена.


Реакция преципитации в агаровом геле, или метод диффузионной преципитации, позволяет детально изучить состав сложных водорастворимых антигенных смесей. Для постановки реакции используют гель (полужидкий или более густой агар). Каждый компонент, входящий в состав антигена, диффундирует навстречу соответствующему антителу с разной скоростью. Поэтому комплексы различных антигенов и соответствующих антител располагаются в разных участках геля, где и образуются линии преципитации. Каждая из линий соответствует только одному комплексу антиген — антитело. Реакцию преципитации ставят обычно при комнатной температуре.

Билет 15

1, Жизнедеятельность бактерий характеризуется ростом — фор­мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размноже­нием — самовоспроизведением, приводящим к увеличению ко­личества бактериальных клеток в популяции.бактерии, риккетсии, спирохеты размножаются путем поперечного деления на две равноценные особи. Грамположительные бактерии делятся путем образования перегородки, врастающей от периферии к центру. У микобактерий туберкулеза поперечная перегородка образуется внутри клетки, затем она расщепляется на два слоя и клетка делится на две части, В образовании перегородки принимает участие как цитоплазматическая мембрана, так и клеточная стенка. Размножение клубеньковых бактерий и фраициселл происходит путем образования почки, которая, по величине меньше исходной клетки. У бактерий существует также процесс конъюгации — временного соединения двух особей.

Рост бактерий и спирохет не всегда сопровождается их делением. Соли желчных кислот, мыла, пенициллин, ультрафиолетовые лучи задерживают деление клетки, в результате чего образуются длинные нити значительно большего размера, чем исходные клетки.
При внесении бактерий в питательную среду различают фазы их роста и размножения, которые определяются наличием доступных источников питания и накоплением токсических продуктов обмела.

Первая фаза — латентная (лаг-фаза) — соответствует приспособлению бактерий к новым условиям существования. В этот период бактерии адаптируются к питательной среде, роста их не наблюдается.

Вторая фаза — логарифмического роста (экспоненциальная), когда бактерии энергично растут, увеличиваются, при достижении определенного размера начинают делиться на две дочерние клетки. Деление в этот период происходит с постоянной скоростью. Среднее время генерации (или удвоения) для каждого вида бактерий различно. В это время бактерии извлекают из среды питательные вещества, в результате чего в ней начинают накапливаться продукты обмена.

Третья фаза — стационарного роста, во время которой число организмов в культуре все время остается постоянным. В этот период в питательной среде количество питательных веществ значительно уменьшается, а накопление продуктов обмена увеличивается. Условия жизни для микроорганизмов становятся все менее благоприятными. Длительность стационарной фазы у разных бактерий различная.

Четвертая фаза — отмирания, когда клеток бактерий становится все меньше и они погибают. В конце этой фазы число отмирающих бактерий начинает преобладать над числом жизнеспособных клеток. Полная гибель микробов в культуре может наступить через несколько недель или месяцев, что зависит от вида микроба, реакции среды и других факторов.

   

2. Инфекционный процесс - сложный процесс взаимодействия возбудителя и макроорганизма в определённых условиях внешней и внутренней среды, включающий в себя развивающиеся патологические защитно-приспособительные и компенсаторные реакции.

Инфекционный процесс возникает при наличии трех компонентов:

- возбудитель,
- фактор передачи инфекции от заражённого организма к здоровому,
- восприимчивый макроорганизм (пациент).

Факторы, от которых зависит развитие инфекционного процесса:

- восприимчивость макроорганизма (реакция организма на внедрение возбудителя инфекции, развитие заболевания, или бакносительство);
- инвазивность возбудителя инфекции (способность микроорганизма проникать в ткани и органы макроорганизма и распространяться в них);
- доза возбудителя;
- патогенность возбудителя (способность микроорганизма в естественных условиях вызывать инфекционные заболевания);
- вирулентность возбудителя (степень патогенности данного микроорганизма при стандартных условиях естественного или искусственного заражения).

Восприимчивость хозяина к возбудителю зависит от многих факторов:

1 - неблагоприятная окружающая среда;
2 - нарушения иммунного статуса;
3 - наличие длительных хронических заболеваний;
4 - изменение нормальной микрофлоры кишечника (приём антибиотиков, стероидных гормонов);
5 - химио- и лучевая терапия;
6 - возраст;
7 - недостаточность/неполноценность питания;
8 - обширность травматических поражений, высокая степень ожогов и отморожений;
9 - низкая гигиеническая культура населения.

Наши рекомендации