Первичная обработка, сушка и хранение лрс

Собирают только зрелые плоды, без плодоножек и чашечек. Сбор производят утром, после того, как сойдет роса, и в конце дня, когда спадает жара (ягоды, собранные в зной, быстро портятся) и еще не появится роса. Тарой при сборе служат небольшие корзинки. В сырье не должно быть примеси листьев, а также плодов с браком (незрелых, загрязненных или порченых), поэтому сортировать их следует во время сбора, а не перед сушкой, когда они слегка увлажнены, легко мнутся и деформируются. Перед сушкой их слегка подвяливают в течение 4—5 ч при температуре 25—30°С, чтобы испарилась часть влаги, а затем досушивают при температуре 45—65°С. Высушенные плоды при сжатии в комок должны рассыпаться. Выход сухого сырья 14—16% от свежесобранного. Готовое сырье должно быть ярко-красного цвета, без посторонних примесей. В нем допустимо содержание влаги не более 13%; измельченных ягод 5%; органической примеси 1%; минеральной — 1%. Сухие плоды упаковывают в мешки (до 50 кг). Срок хранения сырья 2 года.

Листья земляники собирают во время цветения растений, обрывая их вручную или срезая ножом так, чтобы остаток черешка не превышал 1 см. Сушат их сразу после сбора на открытом воздухе в тени или на стеллажах в хорошо проветриваемых помещениях, рассыпав тонким слоем на брезенте или на мешковине и периодически переворачивая. Сушка считается законченной, когда черешки листьев при сгибании с треском ломаются. Выход сухого сырья — 20% от свежесобранного. Сухие листья должны быть со слабым запахом и вяжущим вкусом, сверху зеленые или темно-зеленые, а снизу — сероватые или голубовато-зеленые. В сырье допустимо содержание влаги не более 13%; измельченных частей 5%; побуревших или почерневших листьев 2%; листьев с остатками черешков длиной более 1 см 5%; других частей земляники (цветоносных стеблей, цветков, завязей и др.) 5%;органической примеси 1%. Готовое сырье упаковывает в мешки по 15—20 кг или в тюки по 50 кг. Срок годности сырья 1 год.

Химический состав

Плоды земляники содержат сахара, аскорбиновую кислоту, пиридоксин, антоциановые соединения, каротин, следы тиамина, пектины, флавоновые и дубильные вещества, витамин В, органические кислоты - яблочную, лимонную, салициловую, сданную и др., эфирное масло, фитонциды, фосфорнокислое железо, алюминий, хром, медь, марганец. В листьях обнаружены дубильные вещества, следы алкалоидов, каротин, аскорбиновая кислота. Во всех органах растения присутствует рутин.

Тиамина хлорид (Thiamine chloride, Vitamin B1)

Тиамин описан в литературе как витамин В1, витамин F или аневрин. В кристаллическом состоянии он стабилен при температуре 100°С. Водные растворы тиамина при рН < 5,0 устойчивы к действию высоких темпе первичная обработка, сушка и хранение лрс - student2.ru ратур и окислителей, при рН > 5,0 они достаточно быстро разрушаются при автоклавировании, а при рН > 7,0 – даже при кипячении. Если рН раствора превышает 8,0 то тиамин быстро образует окрашенные в желтый цвет комплексы, которые через ряд необратимых реакций быстро утрачивают витаминную активность.

В незначительном количестве тиамин синтезируется микрофлорой кишечника, но при этом нет убедительных данных, что синтез тиамина в кишечнике является доступным источником витамина.

1. Суточная потребность в тиамине составляет »1,0-2,0 мг, но может изменяться в зависимости от количества потребляемых углеводов. В среднем считают, что необходимо »0,3 мг тиамина на каждые 1000 ккал пищи. Тиамин регулирует углеводный обмен, обеспечивает его взаимосвязь с процессом липогенеза.

2. За счет декарбоксилирования пировиноградной, a-кетоглутаровой кислот и других a-кетокислот тиамин позволяет быстро ликвидировать метаболический ацидоз.

Облегчает нервно-мышечную проводимость. Данный эффект связан, по крайней мере, с двумя механизмами. С одной стороны, тиамин ингибирует активность холинэстеразы и замедляет, тем самым, разрушение ацетилхолина. За счет увеличения концентрации медиатора в нейро-мышечных синапсах передача импульсов облегчается. Кроме того, было установлено, что фосфорилированные формы тиамина (тиаминпирофосфат и тиаминтрифосфат) могут связываться с Na+-каналами скелетных мышц вблизи воротного механизма. При прохождении нервного импульса, тиамин дефосфорилируется и открывает натриевые каналы даже в отсутствии медиатора, вызывая при этом мышечное сокращение.

первичная обработка, сушка и хранение лрс - student2.ru Рибофлавин (Riboflavin, Vitamin B2)

Является желтым флавоновым пигментом, который содержится в молоке, яйцах, печени, зеленых листьях растений, зернах злаков. Часть рибофлавина в организме человека синтезируется флорой толстой кишки, однако не известно, способен ли всасываться этот витамин. Суточная потребность в рибофлавине составляет около 1,5-3,0 мг или приблизительно 0,4 мг на 1000 ккал пищи. В организме рибофлавин превращается в коферментные формы – ФМН (флавинмононуклеотид) и ФАД (флавинадениндинуклеотид), которые входят в состав ферментов из группы оксидаз и редуктаз (т.к. они образуют окислительно-восстановительную систему), а также дыхательных цепей. В организме наибольшие количества витамина содержатся в сердце, печени, почках и мозге. Экскреция витамина осуществляется почками.

· формирует редокс системы дыхательных цепей и обеспечивает тканевое дыхание и нормальное функционирование бессосудистых эпителиальных тканей (хрусталик, эпидермис и др.).

· необходим для синтеза катехоламинов, т.к. он входит в состав фенилаланин-гидроксилазы и обеспечивает синтез L-ДОФА – предшественника дофамина и норадреналина в ЦНС и надпочечниках.

· стимулирует синтез эритропоэтина – основного стимулятора эритропоэза.

· входит в состав моноаминооксидаз (обеспечивают разрушение катехоламинов) и ксантиноксидазы (обеспечивает разрушение пуринов и синтез мочевой кислоты).

первичная обработка, сушка и хранение лрс - student2.ru Пиридоксина гидрохлорид (Pyridoxine hydrochloride, Vitamin B6) Витамин В6 существует в форме 3 витамеров, отличающихся заместителями в 4-ом положении пиридинового кольца: пиридоксин (С4 гидроксиметил), пиридоксаль (С4 формил) и пиридоксамин (С4 метиламин). В печени человека эти витамеры могут переходить один в другой.

Пищевая роль. Суточная потребность в витамине В6 составляет 2 мг для мужчин и 1,6-2,2 мг для женщин. Поскольку биологическая роль витамина тесно связана с обменом белка, то рекомендуемое количество витамина составляет 0,016-0,032 мг/г белка пищи.

Витамин В6 широко распространен в продуктах питания – животные продукты содержат пиридоксаль и пиридоксамин, растительные – пиридоксин. В печени все витамеры пиридоксина трансформируются в пиридоксаль, который подвергается фосфорилированию в коферментную форму – пиридоксаль фосфат. Присоединение кофермента к апобелку фермента происходит после того, как пиридоксаль фосфат образует основание Шиффа, которое фиксируется к e-аминогруппам остатков лизина в белке ферменте. Пиридоксин хорошо всасывается при введении внутрь или парентерально причем процесс абсорбции витамина в тонком кишечнике происходит путем пассивной диффузии и не является насыщаемым. Транспорт пиридоксина в крови протекает в связанном с альбуминами и гемоглобином эритроцитов состоянии. Основным депо пиридоксина в организме являются скелетные мышцы, которые содержат 80-90% всего пиридоксина организма. В настоящее время известно более 100 ферментов, использующих пиридоксаль фосфат в качестве кофермента. Основными являются трансаминазы, которые обеспечивают переаминирование a-кетокислот и синтез заменимых аминокислот.

1. В мышцах пиридоксаль фосфат входит в состав гликогенфосфорилазы и обеспечивает гликогенолиз.

2. Пиридоксаль фосфат входит в состав кинурениназы – фермента, который обеспечивает синтез из триптофана витамина РР.

Пиридоксаль фосфат обеспечивает работу декарбоксилаз в периферических тканях и ЦНС. Под влиянием этих ферментов происходит синтез основных центральных медиаторов:

Аскорбиновая кислота (Ascorbinic acid, Vitamin C)

Интересно отметить, что аскорбиновая кислота выполняет роль витамина только у приматов, морских свинок, летучих мышей-крыланов, воробьев и краснобрюхих дроздов. Все другие животные способны синтезировать эту кислоту из глюкозы. Пищевая роль. Аскорбиновая кислота содержится как в продуктах растительного, так и животного происхождения. Суточная потребность в витамине С составляет 30-60 мг. Общее количество витамина С в организме составляет 1500 мг (но при чрезмерном поступлении витамина в организм его депо может увеличиваться до 2500 мг). Запасов депо хватает на 30-45 дней. В организме аскорбиновая кислота превращается частично в дигидроаскорбиновую кислоту и при этом образуется окислительно-восстановительная система, которая способна переносить водород в различных биохимических реакциях. В крови аскорбиновая кислота транспортируется в связанном с лейкоцитами и тромбоцитами состоянии. Наибольшие количества аскорбиновой кислоты накапливаются в гипофизе, надпочечниках, хрусталике глаза и печени. Выводится аскорбиновая кислота почками, после превращения внеактивную дикетогулоновую, а затем щавелевую кислоту. Период полуэлиминации ее составляет 12,8-29,5 сут.

1. Аскорбиновая кислота поддерживает в восстановленном состоянии металллы простетических групп металлоферментов, которые принимают участие в следующих процессах:

[ Синтез коллагена. Аскорбиновая кислота восстанавливает железо в активном центре пролилгидроксилазы и медь в активном центре лизилгидроксилазы. Эти ферменты гидроксилируют остатки пролина и лизина в молекулах протоколлагена и это обеспечивает посттрансляционную стабилизацию третичной структуры коллагеновой цепи.

[ Синтез L-карнитина. Аскорбиновая кислота обеспечивает гидроксилирование триметил-лизина в процессе синтеза L-карнитина – основного переносчика жирных кислот через митохондриальную мембрану для последующего их b-окисления.

[ Синтез нейромедиаторов. Аскорбиновая кислота обеспечивает работу гидроксилаз, которые синтезируют норадреналин из дофамина и серотонин из триптамина в ЦНС.

[ Синтез стероидных гормонов. Аскорбиновая кислота обеспечивает работу цитохромов Р450, участвующих в биосинтезе стероидов (окисление в 7a-положении).

2. Аскорбиновая кислота обеспечивает протекание следующих восстановительных реакций:

[ Восстановление Fe3+ в Fe2+ в процессе абсорбции.

[ Восстановление фолиевой кислоты до активной тетрагидрофолиевой кислоты.

3. Показано, что аскорбиновая кислота стимулирует образование циклических нуклеотидов (цАМФ и цГМФ), простагландинов.

4. Под влиянием аскорбиновой кислоты усиливается синтез иммуноглобулинов, лизоцима и интерферонов.

Наши рекомендации