Пожаробезопасность на производстве и в быту

Пожаром называют неконтролируемое горение, развивающееся во времени и пространстве, опасное для людей и наносящее материальный ущерб. Пожарная и взрывная безопасность – это система организационных и технических средств, направленная на профилактику и ликвидацию пожаров и взрывов.

Рассмотрим физико-химические основы процесса горения. Горение – это сложное, быстропротекающее физико-химическое превращение веществ, сопровождающееся выделением тепла и света. Примером таких экзотермических реакций горения может служить взаимодействие углерода, водорода и метана с кислородом:

С+О2 = СО2 + 383,5 кДж/моль;

22 = 2Н2О +517,7 кДж/моль;

СН4 + 2С2 = СО2 + 2Н2О + 882,0 кДж/моль.

Экзотермическими называют химические реакции, протекающие с выделением тепла.

Таким образом, для протекания процесса горения требуется наличие трех факторов: горючего вещества, окислителя и источника зажигания (импульса). Чаще всего окислителем является кислород воздуха, но его роль могут выполнять и некоторые другие вещества: хлор, фтор, бром, йод, оксиды азота и др. Некоторые вещества (например, сжатый ацетилен, хлористый азот, озон) могут взрываться с образованием тепла и пламени. Горение большинства веществ прекращается, когда концентрация кислорода понижается с 21 до 14–18%. Некоторые вещества, например, водород, этилен, ацетилен, могут гореть при содержании кислорода воздуха до 10% и менее.

Источниками зажигания могут служить случайные искры различного происхождения (электрические, возникшие в результате накопления статического электричества, искры от газо- и электросварки и т.д.), нагретые тела, перегрев электрических контактов и др.

Различают полное и неполное горение. Процессы полного горения протекают при избытке кислорода, а продуктами реакции являются вода, диоксиды серы и углерода, т. е. вещества, не способные к дальнейшему окислению. Неполное горение происходит при недостатке кислорода, продуктами реакции в этом случае являются токсичные и горючие (т. е. способные к дальнейшему окислению) вещества, например, оксид углерода, спирты, альдегиды, кетоны и др.

В зависимости от свойств горючей смеси горение бывает гомогенным и гетерогенным. При гомогенном горении горючее вещество и окислитель имеют одинаковое агрегатное состояние (например, смесь горючего газа и воздуха), а при гетерогенном – вещества при горении имеют границу раздела (например, горение твердых или жидких веществ в контакте с воздухом).

По скорости распространения пламени различают следующие виды горения: дефлаграционное (скорость распространения пламени – десятки метров в секунду), взрывное (сотни метров в секунду) и детонационное (тысячи метров в секунду). Для пожаров характерно дефлаграционное горение.

Принято различать бедные и богатые горючие смеси в зависимости от соотношения горючего и окислителя. Бедные смеси содержат в избытке окислитель, а богатые – горючее.

Процессы возникновения горения следующие:

§ вспышка – быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов;

§ возгорание – возникновение горения под действием источника зажигания;

§ воспламенение – возгорание, сопровождающееся появлением пламени;

§ самовозгорание – явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания;

§ самовоспламенение – самовозгорание, сопровождающееся появлением пламени.

Взрыв – чрезвычайно быстрое химическое (взрывчатое) превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

При пожаре на людей воздействуют следующие опасные факторы: повышенная температура воздуха или отдельных предметов, открытый огонь и искры, токсичные продукты сгорания (например, угарный газ), дым, пониженное содержание кислорода в воздухе, взрывы и др.

Оценим пожарную опасность (пожароопасность) различных веществ и материалов, учитывая их агрегатное состояние (твердое, жидкое или газообразное). Основные показатели пожарной опасности – температура самовоспламенения и концентрационные пределы воспламенения. Температура самовоспламенения – минимальная температура вещества или материала, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся пламенным горением. Процесс самовоспламенения происходит только в том случае, если количество теплоты, выделяемое в процессе окисления, превысит ее отдачу в окружающую среду. Смеси горючих газов, паров и пыли с окислителем способны гореть только при определенном соотношении в них горючего вещества. Минимальную концентрацию горючего вещества, при котором оно способно загораться и распространять пламя, называют нижним концентрационным пределом воспламенения. Наибольшую концентрацию, при которой еще возможно горение, называют верхним концентрационным пределом воспламенения. Область концентрации между этими пределами представляет собой область воспламенения.

Кроме концентрационных различают и температурные пределы (нижний и верхний) воспламенения, под которыми понимают такие температуры вещества или материала, при которых его насыщенные горючие пары образуют в окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам распространения пламени.

Температура воспламенения – это минимальная температура вещества или материала, при которой они выделяют горючие пары и газы с такой скоростью, что при наличии источника зажигания возникает устойчивое горение. После удаления этого источника вещество продолжает гореть. Таким образом, температура воспламенения характеризует способность вещества к самостоятельному устойчивому горению.

Температура вспышки (tвсп) – это минимальная температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные вспыхнуть от источника. Скорость образования горючих газов при вспышке еще недостаточна для возникновения пламени.

Температура вспышки используется для характеристики всех горючих жидкостей по пожарной опасности. По этому показателю все горючие жидкости делятся на два класса: легковоспламеняющиеся (ЛВЖ), к которым относятся жидкости с температурой вспышки до 61°С (бензин, ацетон, этиловый спирт и др.) и горючие (ПК) с температурой вспышки выше 61°С (масло, мазут, формалин и др.).

Температура воспламенения, температура вспышки, а также температурные пределы воспламенения относятся к показателям пожарной опасности. Пыли многих твердых горючих веществ, взвешенные в воздухе, образуют с ним воспламеняющиеся смеси. Минимальную концентрацию пыли в воздухе, при которой происходит ее загорание, называют нижним концентрационным пределом воспламенения пыли. Понятие верхнего концентрационного предела воспламенения для пыли не применяется, так как невозможно создавать очень большие концентрации пыли во взвешенном состоянии.

Кроме рассмотренных характеристик пожароопасности веществ и материалов, используется понятие горючести вещества или материала, т. е. их способности к горению. По этому признаку все вещества делятся на горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

Горючими называют такие вещества и материалы, которые продолжают гореть и после удаления источника зажигания. Трудносгораемые вещества способны возгораться на воздухе от источника зажигания, но после его удаления самостоятельно гореть не могут. Негорючие вещества и материалы не способны гореть на воздухе. Для количественной характеристики горючести веществ и материалов используют показатель возгораемости В:

Пожаробезопасность на производстве и в быту - student2.ru

где Пожаробезопасность на производстве и в быту - student2.ru – количество теплоты, полученный от источника поджигания; Q0 – количество теплоты, выделяемой образцом при горении в процессе испытания.

Если величина В более 0,5, то материалы относят к сгораемым, для трудносгораемых В = 0,1–0,5, а для несгораемых – В менее 0,1.

Основными причинами пожаров на производстве являются нарушение технологического режима работы оборудования, неисправность электрооборудования, плохая подготовка оборудования к ремонту, самовозгорание различных материалов и др. В соответствии с нормативными документами (ГОСТ 12.1.044-84 «Пожарная безопасность» и ГОСТ 12.1.010-76 «Взрывобезопасность. Общие требования») вероятность возникновения пожара или взрыва в течение года не должна превышать 10-6 (одной миллионной). Для предотвращения пожаров и взрывов необходимо исключить возможность образования горючей и взрывоопасной среды и предотвратить появление в этой среде источников зажигания.

При проектировании промышленных предприятий следует учитывать требования пожарной безопасности. Необходимо, чтобы используемые строительные конструкции обладали требуемой огнестойкостью, т. е. способностью сохранять под действием высоких температур пожара свои рабочие функции, связанные с огнепреграждающей, теплоизолирующей или несущей способностью.

Огнепреграждающая способность строительных конструкций характеризует их стойкость к образованию трещин или сквозных отверстий, через которые проникают продукты горения или пламя.

Теплоизолирующая способность конструкции зависит от их способности к прогреву. Многие строительные материалы плохо проводят тепло (обладают низкой теплопроводностью). Это объясняется тем, что они имеют пористую структуру, причем в их ячейках заключен воздух, теплопроводность которого мала. Огнестойкость по теплоизолирующей способности характеризуется повышением температуры в любой точке на необогреваемой поверхности конструкции более чем на 190°С по сравнению с ее первоначальной температурой (до нагрева).

Потеря несущей способности строительной конструкции характеризуется ее обрушением или прогибом.

Количественно огнестойкость строительных конструкций характеризуют пределом огнестойкости, т. е. временем (в часах или минутах), по истечении которого строительная конструкция теряет несущую или ограждающую способность. Потеря ограждающей способности – это образование в несущих конструкциях трещин, через которые в соседние помещения могут проникать продукты горения и пламя, или прогрев строительных конструкций до таких температур, при которых возможно самовоспламенение веществ в смежных помещениях.

Для повышения огнестойкости зданий и сооружений их металлические конструкции оштукатуривают или облицовывают материалами с низкой теплопроводностью, например, гипсовыми плитами. Хороший эффект дает окрашивание металлических и деревянных конструкций специальными огнезащитными красками (например, типа ВПМ). Для защиты деревянных конструкций от огня их также оштукатуривают или пропитывают антипиренами (например, фосфорнокислым или сернокислым аммонием и др.). Антипирены – это химические вещества, придающие древесине негорючесть.

Для того чтобы огонь при пожаре не распространялся с одного здания на другое, их располагают на определенном расстоянии друг от друга. Это расстояние называют противопожарным разрывом. Для различных категорий зданий противопожарные разрывы составляют 9–18 м. Для защиты от пожара в зданиях устраивают противопожарные преграды, т. е. конструкции с нормируемым пределом огнестойкости, препятствующие распространению огня из одной части здания в другую. К этим преградам, имеющим предел огнестойкости не менее 2,5 ч, относятся стены, перегородки, перекрытия, двери, ворота, окна и др.

При проектировании и строительстве необходимо предусмотреть пути эвакуации работающих, т. е. пути, ведущие к эвакуационному выходу на случай возникновения пожара. Здания и сооружения должны быть снабжены устройствами, предназначенными для удаления дыма при пожаре: аэрационными фонарями, специальными дымовыми люками и др.

Рассмотрим основные способы тушения пожаров и применяемые при этом огнегасительные вещества.

Для тушения пожара используют следующие средства: разбавление воздуха негорючими газами до таких концентраций кислорода, при которых горение прекращается; охлаждение очага горения ниже определенной температуры (температуры горения); механический срыв пламени струей жидкости или газа; снижение скорости химической реакции, протекающей в пламени; создание условий огнепреграждения, при которых пламя распространяется через узкие каналы.

Огнегасительньными называют вещества, которые при введении в зону сгорания прекращают горение. Основные огнегасящие вещества и материалы – это вода и водяной пар, химическая и воздушно-механическая пены, водные растворы солей, негорючие газы, галоидоуглеводородные огнегасительные составы и сухие огнетушащие порошки.

Наиболее распространенным веществом, применяемым для тушения пожара, является вода. Она снижает температуру очага горения. При нагреве до 100°С 1 литра воды поглощается приблизительно 4·105Дж теплоты, а при испарении – 22·105Дж. Водяной пар (из 1 литра воды образуется около 1700 л пара) препятствует доступу кислорода к горящему веществу. Вода, подаваемая к очагу горения под большим давлением, механически сбивает пламя, что облегчает тушение пожара. Воду не применяют для тушения щелочных металлов (натрия, калия), карбида кальция, а также легковоспламеняющихся и горючих жидкостей, плотность которых меньше плотности воды (бензин, керосин, ацетон, спирты, масла и др.), так как они всплывают на поверхность воды и продолжают гореть на поверхности. Вода хорошо проводит электрический ток, поэтому ее не используют для тушения электроустановок, находящихся под напряжением (это приводит к короткому замыканию).

Водяной пар можно применять для тушения ряда твердых, жидких и газообразных веществ. Наибольший эффект от применения водяного пара достигается в помещениях, объем которых не превышает 500 м3, а также при пожарах, возникших на небольших открытых площадках.

Химические и воздушно-механические пены применяют для тушения твердых и жидких веществ, не взаимодействующих с водой. Одной из основных характеристик этих пен является их кратность, т. е. отношение объема пены к объему ее жидкой фазы.

Воздушно-механическую пену получают в специальных пенообразующих аппаратах с использованием пенообразователей (ПО-1С, ПО-6К, ПО-ЗА, «САМПО» и др.). Различают воздушно-механическую пену низкой (до 20), средней (20–200) и высокой (свыше 200) кратности. Воздушная пена, полученная пенообразователем ПО-1C и некоторыми другими, пригодна для тушения некоторых ЛВЖ и ГЖ (спиртов, ацетона, эфиров и др.).

Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии пенообразователя. Она состоит из водного раствора минеральных солей, пенообразователя и пузырьков углекислого газа. Ее стоимость выше, чем воздушно-механической пены, поэтому использование химической пены при пожаротушении имеет тенденцию к сокращению. При тушении пожаров пеной покрывают горящие вещества, препятствуя тем самым поступлению горючих газов и паров к очагу горения.

Применение инертных и негорючих газов (аргон, азот, галоидированные углеводороды и др.) основано на разбавлении воздуха и снижении в нем концентрации кислорода до значений, при которых горение прекращается. Так, углекислый газ (диоксид углерода) используется для тушения горящих складов ЛВЖ, аккумуляторных станций, электрооборудования, печей и др. Его нельзя применять для тушения щелочных и щелочноземельных металлов, тлеющих материалов и некоторых других. Для тушения этих материалов лучше применять аргон, а в некоторых случаях и азот. Высокими огнегасительными свойствами обладают и галоидированные углеводороды (хладоны, бромистый этил и др.).

К числу жидких огнегасительных веществ относятся водные растворы некоторых солей, например, бикарбоната натрия, хлористого кальция, хлористого аммония, аммиачно-фосфорных солей и др. Их действие при тушении пожара основано на образовании на поверхности горящего материала изолирующих пленок, возникающих при испарении из растворов солей воды. Эти пленки препятствуют проникновению кислорода к поверхности горящего материала. Кроме того, на испарение воды затрачивается значительное количество теплоты, что приводит к понижению температуры очага горения.

Порошковые огнегасительные составы препятствуют поступлению кислорода к поверхности горящего материала. Их используют для тушения небольших количеств различных горючих веществ и материалов, при тушении которых нельзя применять другие огнесительные средства. Примером этих материалов могут служить хлориды калия и натрия, порошки на основе карбонатов и бикарбонатов натрия и калия.

Средства пожаротушения подразделяют на первичные, стационарные и передвижные (пожарные автомобили).

Первичные средства используют для ликвидации небольших пожаров и загорания. Их обычно применяют до прибытия пожарной команды. К первичным средствам относятся передвижные и ручные огнетушители, переносные огнегасительные установки, внутренние пожарные краны, ящики с песком, асбестовые покрывала, противопожарные щиты с набором инвентаря и др.

Различают ручные огнетушители (до 10 л) и передвижные (свыше 25 л). В зависимости от вида огнегасительного средства, находящегося в огнетушителях, они делятся на жидкостные, углекислотные, химические пенные, воздушно-пенные, хладоновые, порошковые и комбинированные. Жидкостные огнетушители заполнены водой с добавками, углекислотные – сжиженным диоксидом углерода, химические пенные – растворами кислот и щелочей, хладоновые - хладонами (например, марок 114В2,13В1); порошковые огнетушители заполнены порошковыми составами. Огнетушители маркируются буквами, характеризующими вид огнетушителя по разряду, и цифрой, обозначающей его объем в литрах.

Различают следующие виды углекислотных огнетушителей: ручные – ОУ-2А, ОУ-5, ОУ-8 и передвижные – ОУ-25, ОУ-80, ОУ-400. Эти огнетушители используют для тушения загораний некоторых материалов и электрических установок, работающих под напряжением до 1000 В.

Из химических пенных огнетушителей наиболее распространены на практике ОХП. Их применяют для ликвидации загораний твердых материалов и горючих жидкостей (при малых площадях горения). Воздушно-пенные огнетушители маркируются как ОВП (например, ручные ОВП-5 и ОВП-10). Их используют для тушения загораний ЛВЖ, ГЖ, большинства твердых материалов (кроме металлов). Их нельзя использовать для тушения электроустановок, находящихся под напряжением. Хладоновые огнетушители маркируются как ОХ (например, OX-3, OX-7) или ОАХ-0,5 (в аэрозольной установке). Порошковые огнетушители маркируются как ОПС (например, ОПС-10). Их используют для тушения металлов, ЛВЖ, ГЖ, кремнийорганических материалов, установок, работающих под напряжением до 1000 В. Комбинированные огнетушители (например, типа ОК-10) используют для тушения горящих ЛВЖ и ГЖ. Их заряжают порошковыми составами ПСБ-3 и воздушно-механической пеной.

Стационарные установки предназначены для тушения пожаров в начальной стадии их возникновения. Они запускаются автоматически или с помощью дистанционного управления. Эти установки заправляются следующими огнетушащими средствами: водой, пеной, негорючими газами, порошковыми составами или паром.

К автоматическим установкам водяного пожаротушения относятся спринклерные и дренчерные установки. Отверстия, через которые вода поступает в помещение при пожаре, запаяны легкоплавкими сплавами. Эти сплавы плавятся при определенной температуре и открывают доступ распыляемой воде. Каждая головка орошает помещение и находящееся в нем оборудование площадью до 9 м2.

В тех случаях, когда целесообразно подавать воду на всю площадь помещения, в котором возник пожар, применяют дренчеры, которые также представляют собой систему труб, заполненную водой, оборудованную распылительными головками-дренчерами. В них в отличие от спринклерных головок выходные отверстия для воды (диаметром 8, 10 и 12,7 мм) постоянно открыты. Спринклерные головки приводят в действие открыванием клапана группового действия, который в обычное время закрыт. Он открывается автоматически или вручную (при этом дается сигнал тревоги). Каждая спринклерная головка орошает 9–12 м2 площади пола.

Система работает следующим образом. Пожарный датчик (извещатель) реагирует на появление дыма (дымовой извещатель), на повышение температуры воздуха в помещении (тепловой извещатель), на излучение открытого пламени (световой извещатель) и т.д. и подает сигнал включения системы подачи огнетушащих веществ, которые подаются к очагу загорания.

Пожарные датчики (извещатели) могут быть как ручные (пожарные кнопки, устанавливаемые в коридорах помещений и на лестничных площадках), так и автоматические. Последние, как уже сказано выше, подразделяются на тепловые, дымовые и световые. В дымовых извещателях используют два основных способа обнаружения дыма – фотоэлектрический и радиоизотопный. Так, дымовые фотоэлектрические (ИДФ-1М) и полупроводниковые (ДИП-1) действуют на принципе рассеивания частицами дыма теплового излучения. Радиоизотопные извещатели дыма (РИД-1) основаны на эффекте ослабления ионизации межэлектродного промежутка заряженными частицами, входящими в состав дыма. Один дымовой извещатель устанавливается на 65м2 защищаемой площади. Имеются комбинированные извещатели (КИ), реагирующие на теплоту и дым. Сигнал от пожарных извещателей передается на пожарные станции, наиболее распространенные из них – ТЛО-10/100 (тревожная лучевая оптическая) и «Комар – сигнал 12 AM» (концентратор малой вместимости). В качестве передвижных средств пожаротушения используются пожарные автомобили (автоцистерны и специальные).

Наши рекомендации