Знакоопределённость квадратичной формы. Критерий Сильвестра
До сих пор мы рассматривали «внешнее устройство» форм и пришло время изучить их функциональное назначение. Да, по существу, они работают, как функции. Вернёмся к простенькой линейной форме .
Как отмечалось в начале урока, переменные могут принимать произвольные действительные значения (мы ограничились ими), и каждой такой паре соответствует определённое значение , например:
, и так далее.
Говоря языком науки, перед нами скалярная функция векторного аргумента, в которой каждому вектору ставится в соответствие определённое число . Обращаю ваше внимание, что сейчас идёт речь не о геометрическом векторе, а о векторе в его алгебраическом понимании.
В зависимости от значений рассматриваемая форма может принимать как положительные, так и отрицательные значения, и то же самое касается любой линейной формы – если хотя бы один из её коэффициентов отличен от нуля, то она может оказаться как положительной, так и отрицательной (в зависимости от значений ).
Такая форма называется знакопеременной. И если с линейной формой всё прозрачно, то с формой квадратичной дела обстоят куда более интересно:
Совершенно понятно, что данная форма может принимать значения любого знака, таким образом, квадратичная форма тоже может быть знакопеременной.
А может и не быть:
– всегда, если только одновременно не равны нулю.
– для любого вектора , кроме нулевого .
И вообще,если для любого ненулевого вектора , , то квадратичную форму называют положительно определённой; если же – то отрицательно определённой.
Также коснёмся «краевых» случаев: если для любого ненулевого вектора , то форма определена неотрицательно, если – то неположительно. У этих форм существует ненулевые векторы , при которых .
Здесь можно привести такой «баян»:
Выделяя полный квадрат, сразу видим неотрицательность формы: , причём, она равна нулю при любом векторе с равными координатами, например: .
«Зеркальный» пример неположительно определённой формы:
И всё бы было хорошо, всё гладко, но определённость квадратичной формы виднА лишь в простых примерах. Как обстоят дела, например, в таком случае:
?
Можно предположить, что форма определена положительно, но так ли это на самом деле? Вдруг существуют значения , при которых она меньше нуля?
На этот счёт существует теорема: если ВСЕ собственные числа матрицы квадратичной формы положительны*, то она определена положительно. Если все отрицательны – то отрицательно.
* В теории доказано, что все собственные числа действительной симметрической матрицы действительны
Запишем матрицу вышеприведённой формы:
и из уравнения найдём её собственные значения:
Решаем старое доброе квадратное уравнение:
, значит, форма определена положительно, т.е. при любых ненулевых значениях она больше нуля.
Рассмотренный метод вроде бы рабочий, но есть одно большое НО. Уже для матрицы «три на три» искать собственные числа – есть занятие долгое и неприятное; с высокой вероятностью получится многочлен 3-й степени с иррациональными корнями.
Как быть? Существует более простой путь!
Критерий Сильвестра
Нет, не Сильвестра Сталлоне :) Сначала напомню, что такое угловые миноры матрицы. Это определители которые «разрастаются» из её левого верхнего угла:
и последний из них в точности равен определителю матрицы.
Теперь, собственно, критерий:
1) если ВСЕ угловые миноры матрицы формы больше нуля, то она определена положительно, если они не отрицательны – то неотрицательно.
2) если миноры знакочередуются, причём, первый минор отрицателен, то квадратичная форма является отрицательно определённой. Если нечётные миноры неположительные, а чётные неотрицательные, то форма определена неположительно – осмысливаем, сегодня прямо какой-то день скороговорок :)
Проанализируем угловые миноры матрицы :
, и это сразу говорит нам о том, что форма не определена отрицательно.
Вывод: все угловые миноры больше нуля, значит, форма определена положительно.
Есть разница с методом собственных чисел? ;)
Запишем матрицу формы из Примера 1:
первый её угловой минор , а второй , откуда следует, что форма знакопеременна, т.е. в зависимости от значений , может принимать как положительные, так и отрицательные значения. Впрочем, это и так очевидно.
Возьмём форму и её матрицу из Примера 2:
тут вообще без озарения не разобраться. Но с критерием Сильвестра нам всё нипочём:
, следовательно, форма точно не отрицательна.
, и точно не положительна (т.к. все угловые миноры должны быть положительными).
Вывод: форма знакопеременна.
Теперь разберём более занятную задачку:
Пример 4
Исследовать квадратичную форму на знакоопределенность
Данную форму украшает орден «альфа», который может равняться любому действительному числу. Но это ж только веселее будет, решаем.
Сначала запишем матрицу формы, наверное, многие уже приноровились это делать устно: на главную диагональ ставим коэффициенты при квадратах, а на симметричные места – споловиненные коэффициенты соответствующих «смешанных» произведений:
Вычислим угловые миноры:
третий определитель я раскрою по 3-й строке:
Кстати, в силу симметрии, по 3-му столбцу он раскрывается точно так же.
Дальнейшее решение удобно разбить на 2 пункта:
1) Выясним, существуют ли значения «альфа», при которых форма определена положительно или неотрицательно. Согласно критерию Сильвестра, условию положительности формы соответствует следующая система линейных неравенств:
В соответствии с поставленной задачей, сначала разберёмся со 2-м неравенством:
умножим обе его части на , сменив у неравенства знак:
, что противоречит первому неравенству системы.
Таким образом, система несовместна, а значит, форма не может быть положительной или неотрицательной ни при каких значениях «альфа».
2) Проведём исследование на отрицательность / неположительнось. Условию отрицательности формы соответствует следующая система линейных неравенств:
Второе неравенство уже решено: , и оно не противоречит первому. И третье неравенство тоже «вписалось в рамки»: .
Таким образом, имеем совместную систему:
из которой следует, что форма определена отрицательно при . Например, если :
– то при любом ненулевом векторе данная форма будет строго отрицательна.
Осталось исследовать «пограничный» случай. Если , то:
что соответствует критерию неположительности формы.
Иными словами, квадратичная форма , причём, нулю она равна и при некоторых ненулевых значениях .
Ответ: при форма определена отрицательно, при неположительно, в остальных случаях форма знакопеременна.
Символическое задание для самостоятельного решения:
Пример 5
Исследовать квадратичные формы на знакоопределенность
а)
б)
Решение и ответ рядом, после чего я жду вас на следующем уроке – о каноническом виде квадратичной формы.
Как привести квадратичную форму к каноническому виду?
Метод Лагранжа
Приветствую вас на втором уроке о квадратичных формах, который посвящен её каноническому виду и соответствующим методам. «Чайникам» и вновь прибывшим с поисковика рекомендую сначала ознакомиться первой частью – чтобы быстренько привести себя в форму :)
И мы сразу же продолжаем. Если в квадратичной форме отсутствуют слагаемые с парными произведениями переменных, то говорят, что она находится в каноническом виде. …Первая часть предложения была понятной? Тогда едем дальше.
Любую квадратичную форму можно привести к каноническому виду:
– форму двух переменных – к виду (различаем коэффициенты «а» и «альфа»!);
– трёх переменных – к виду ;
…
– форму переменных «простыня» – к виду:
Чуть позже я сформулирую это утверждение более строго, расскажу о геометрическом смысле, да и просто смысле приведения – после того, как мы освоим техническую сторону вопроса.
И ключевой момент этой технической стороны состоит в линейных заменах:
– ТАКИХ, которые как раз и приводят форму к каноническому виду.
Систему часто записывают в виде компактного матричного уравнения , где:
– столбцы старых и новых переменных, – матрица линейного преобразования.
Внимание! Если вам не понятно, как из уравнения получить систему замен, обязательно посмотрите здесь (после Примера 3). Это важно.
Существует несколько способов приведения формы к каноническому виду, и в рамках сайта я расскажу о методе Лагранжа и методе ортогональных преобразований (уже следующий урок).
Начнём с наиболее простого метода:
Пример 6
Привести квадратичную форму к каноническому виду методом Лагранжа. Записать матрицу соответствующего линейного преобразования.
простенько и со вкусом
Решение: здесь используются стандартные замены с последующим применением бородатой формулы :
– форма в каноническом виде.
Запишем матрицу проведённого линейного преобразования: – она состоит из «игрековых» коэффициентов замен .
Ответ: ,
Пример, конечно, прозрачный, но сразу зададимся вопросом – как выполнить проверку? Её можно выполнить матричным методом по формуле , где – транспонированная матрица линейного преобразования, – исходная и – новая матрица квадратичной формы.
В нашем случае – исходная матрица формы , и, перемножая три матрицы:
– получаем матрицу формы , что и требовалось проверить.
Но то был лишь частный случай:
Пример 7
Привести квадратичную форму к каноническому виду методом Лагранжа.
Записать матрицу соответствующего линейного преобразования.
Решение: когда в форме присутствуют квадраты переменных (а они есть почти всегда), то используется другой приём. Идея состоит в выделении полных квадратов по формулам , с дальнейшей заменой переменных.
Сначала выбираем какую-нибудь переменную, которая находится в квадрате, здесь можно выбрать или . Переменные традиционно перебирают по порядку, поэтому рассматриваем и собираем вместе все слагаемые, где есть эта переменная:
«двойку» удобно вынести за скобки:
очевидно, всё дело сведётся к формуле , и нам нужно искусственно организовать данную конструкцию. Для этого в скобках прибавляем и, чтобы ничего не изменилось – за скобками проводим вычитание:
выделяем полный квадрат:
, после чего выполним проверку обратными действиями – раскроем скобки и приведём подобные слагаемые:
, ОК
Теперь проведём замены :
– форма в каноническом виде.
И тут вроде бы можно записать матрицу линейного преобразования, но есть одна загвоздка, проведённые замены имеют вид :
но нам-то нужна другая матрица – матрица уравнения .
Для разрешения уравнения относительно умножим обе его части на слева:
Я не буду подробно расписывать процесс нахождения обратной матрицы, а сразу приведу готовый результат – искомая матрица линейного преобразования. Напоминаю (см. начало урока), что в этой матрице находятся «игрековые» коэффициенты «прямых» замен:
Справка: возможно, ещё не все до конца понимают, как из матричного уравненияполучается система замен. В правой части уравнения выполняем матричное умножение:
Две матрицы равны, если равны их соответствующие элементы, таким образом:
И в самом деле, выполняя прямые замены в форме :
– получаем её канонический вид, найденный выше.
То же самое можно установить матричным методом. Запишем матрицу формы и в результате перемножения трёх матриц:
– получим «каноническую» матрицу.
Прямая подстановка, безусловно, удобнее, но особенность метода Лагранжа состоит в том, что к канонической форме мы подбираемся «с другой стороны» (за исключением немногочисленных случаев наподобие предыдущего примера).
Ответ: ,
Если условие не запрашивает линейное преобразование, то решение заметно сократится. Но мы его наоборот – ещё больше увеличим :) В образовательных целях.
Квадратичную форму можно привести к каноническому виду не единственным способом. Это следует уже из самого алгоритма действий. Так, например, полный квадрат можно выделить без выноса «двойки» за скобку:
контроль:
и, после замен тоже получается канонический, но уже другой вид рассматриваемой формы:
Кстати, начать можно и со 2-й переменной –
выполните это задание самостоятельно:
Привести квадратичную форму к каноническому виду, выделив полный квадрат при переменной . Записать матрицу соответствующего линейного преобразования.
Решение и ответ в конце урока.
Повысим уровень сложности, а точнее, количество переменных:
Пример 8
Привести квадратичную форму к каноническому виду методом Лагранжа
Записать матрицу соответствующего линейного преобразования.
Решать начинаем традиционно – группируем все слагаемые, которые содержат 1-ю переменную:
и начинаем конструировать полный квадрат:
здесь чётко просматривается формула и для её применения мы должны прибавить и вычесть :
«собираем» квадрат суммы и упрощаем «хвост», распишу это упрощение подробно:
контроль:
–ч.т.п.
На следующем шаге обычно выделяется ещё один полный квадрат, но у нас осталось единственно слагаемое с парным произведением, и в подобной ситуации сразу же выполняются замены, в данном случае :
В результате получен неканонический вид формы и поэтому нам потребуется ещё одна замена. Используем стандартный трюк, который встретился в самом начале урока:
. Таким образом, получаем:
– форма в каноническом виде.
Теперь нужно записать матрицу соответствующего линейного преобразования. Ситуация осложнятся тем, что мы провели ДВА преобразования, и нам предстоит найти их композицию – результирующее преобразование, которое выражает через сумму / разность «игреков».
Давайте разбираться, что к чему. Запишем первую замену в матричной форме: .
Вторая же замена имеет несколько другой вид:
Из уравнений следует, что:
Для разрешения полученного уравнения относительно умножим обе его части на слева:
Таким образом, нам нужно найти обратную матрицу (уже не нужно:)) и выполнить матричное умножение:
– получив тем самым искомое результирующее преобразование.
Но подставлять в форму что-то неохота, и поэтому «пропустим через мясорубку» её матрицу , благо, матричный калькулятор под рукой:
– получена матрица приведённой формы , в чём мы и хотели убедиться.
Обратите внимание на удобство матричной записи и матричного метода – они практически «сводят на нет» путаницу в индексах и степенях квадратичной формы.
Ответ: ,
Тренируемся:
Пример 9
Привести квадратичную форму к каноническому виду методом Лагранжа
а)
б) – особенно часто встречающийся тип приведения.
В образцах решения использован «традиционный» путь, т.е. полные квадраты выделяются по порядку, начиная с 1-й переменной. Перед заменой переменных полезно выполнять обратный ход – раскрывать скобки и приводить подобные слагаемые, чтобы получить исходный вид. Это вполне надёжный способ проверки. Также обратите внимание, что здесь не требуется указывать линейное преобразование, однако, я коротко рассказал, как его находить (мало ли, понадобится).
…у всех всё получилось? Тогда продолжаем – начинается самое интересное! Наверное, все понимают, что подавляющее большинство линейных преобразований не приводят нас к желаемому результату. Вернёмся к подопытной форме Примера 7 и проведём, например, такую замену: .
Запишем матрицу формы , матрицу преобразования и воспользуемся знакомой формулой:
Таким образом, форма приняла другой, тоже неканонический вид .
И тут я хочу отметить ещё одно преимущество матричного решения, о котором не говорил. В результате умножения ДОЛЖНА получиться симметрическая и только такая матрица, и этот факт значительно снижает риск пропустить ошибку. Но, разумеется, можно выполнить и прямую подстановку в :
Правда, запутаться тут легче и гарантий никаких.
Далее. Все преобразования, которые нам встретились выше, не вырождены. Что это означает? Это означает, что для них существует обратное преобразование – образно говоря, «путь назад». Теперь не образно:) определитель матрицы невырожденноголинейного преобразования непременно отличен от нуля , что гарантирует существование обратной матрицы и «зеркальной» формулы , с помощью которой мы можем однозначно восстановить исходную матрицу .
Чего не скажешь о преобразовании вырожденном – это «билет в один конец». Одним из таких преобразований является тривиальное нулевое преобразование. Так, например, если , то форма вырождается в нулевую форму с матрицей . Обратного пути нет, то есть, если нам изначально дана вырожденная «игрековая» форма с матрицей , то невозможно выяснить, от какой формы она произошла.
Существуют и другие типы «вырождения», но всех их объединяет тот факт, что определитель матрицы такого преобразования равен нулю: , из чего следует, что обратной матрицыне существует, а значит, не существует и возврата.
А теперь заметим, что нулевое преобразование привело нас… к каноническому виду ! И в самом деле – это же канонический вид по определению. И поэтому сейчас мы усилим утверждение, сформулированное в начале урока:любую квадратичную форму можно привести к каноническому виду с помощью невырожденного линейного преобразования. Существование такого преобразования, в частности, гарантирует метод Лагранжа.
И сейчас я озвучу кульминационный и ОЧЕНЬ важный момент: невырожденное линейное преобразование не меняет СУЩНОСТИ квадратичной формы. Здесь можно привести такой ассоциативный пример: рассмотрим произвольную ненулевую форму и представим, что это квадратный лист бумаги, на котором записано некое слово. Если форма находится в неканоническом виде, то лист занимает такое положение, в котором мы слова не видим, или же только догадываемся, что это за слово.
1) Невырожденное преобразование, которое приводит форму к каноническому виду, поворачивает листок бумаги к нам «лицом» – чтобы слово было отчётливо видно. Поскольку таких преобразований на самом деле много, то лист бумаги в общем случаебудет менять свой размер и местоположение, и размер шрифта тоже будет меняться. Но что не изменится – так это слово.
2) Невырожденное преобразование, которое НЕ приводит форму к каноническому виду, делает то же самое с большим и толстым нюансом: слова мы по-прежнему не видим.
3) Вырожденное линейное преобразование либо полностью стирает с листа слово (нулевое преобразование), либо стирает отдельные буквы – так, чтобы нельзя было однозначно сказать, от какого слова они остались; причём, мы можем не увидеть даже и этих букв (если форма осталась в неканоническом виде).
И, завершая ассоциацию, отметим наиболее интересный случай – когда невырожденноепреобразование не только приводит форму к каноническому виду, но ещё и сохраняет размер листа, т.е. поворачивает его к нам в неизменном виде. Жду вас на третьем уроке о методе ортогонального преобразования, где мы продолжим увлекательную беседу и вложим в сущность формы конкретный геометрический смысл.
12.Комплексные числа( 3 формы и алгебраические операции)
1) Понятие комплексного числа.
2) Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел.
3) Тригонометрическая и показательная форма комплексного числа.
4) Возведение комплексных чисел в степень.
5) Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями.
На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся любимой темой,... после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».
Сначала «поднимем» информацию об «обычных» школьных числах. В математике они называются множеством действительных чисел и обозначаются буквой (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:
Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.
Понятие комплексного числа
Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве.
Если хотите, комплексное число – это двумерное число. Оно имеет вид , где и – действительные числа, – так называемая мнимая единица. Число называется действительной частью ( ) комплексного числа , число называется мнимой частью ( ) комплексного числа .
– это ЕДИНОЕ ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами: или переставить мнимую единицу: – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке:
Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:
Как упоминалось выше, буквой принято обозначать множество действительных чисел. Множествожекомплексных чиселпринято обозначать «жирной» или утолщенной буквой . Поэтому на чертеже следует поставить букву , обозначая тот факт, что у нас комплексная плоскость.
Комплексная плоскость состоит из двух осей:
– действительная ось
– мнимая ось
Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать масштаб, отмечаем:
ноль;
единицу по действительной оси;
мнимую единицу по мнимой оси.
Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и .
Да чего тут мелочиться, рассмотрим чисел десять.
Построим на комплексной плоскости следующие комплексные числа:
, ,
, ,
, , ,
По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.
Рассмотрим следующие комплексные числа: , , . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось обозначает в точности множество действительных чисел , то есть на оси сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел является подмножеством множества комплексных чисел .
Числа , , – это комплексные числа с нулевой мнимой частью.
Числа ,