Основные положения координационной теории Вернера. Природа химической связи в комплексных соединениях.

Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома, окруженного лигандами. Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул, способных к самостоятельному существованию в растворе.

Координационную теорию Вернера рассмотрим на примере:

K3 [Fe(CN)6]

внешняя и внутренняя сфера

Согласно данной теории, центральный атом или ион, в большинстве случаев в форме катиона (обычно положительно заряженный), координирует (т.е. близко располагает) вокруг себя некоторое число анионов или молекул, которые называются лигандами, (или аддендами – старое название). Простые положительно заряженные катионы в роли лигандов не выступают. Число лигандов, окружающих центральный ион, называется координационным числом (КЧ). Центральный атом вместе с координированными лигандами образуют внутреннюю координационную (т.е. комплексную) сферу,которую при записи формулы заключают в квадратные скобки. Остальные ионы, не разместившиеся во внутренней сфере, находятся на более далеком расстоянии от центрального иона, составляя внешнюю координационную сферу.

В подавляющем большинстве комплексных соединений в качестве комплексообразователя выступают ионы переходных металлов, хотя известны комплексные соединения практически для всех элементов.

Координационное число может иметь значения 2; 3; 4; 5; 6 и т. д. вплоть до 12 (например, для некоторых соединений редкоземельных металлов). Наиболее часто встречаются координационные числа 2; 4; 6. Координационные числа выше 8 встречаются реже.

Значение кч комплексообразователя зависят от многих факторов:

- от природы лиганда и его электронных свойств;

- агрегатного состояния;

- концентрации компонентов;

- температуры раствора;

- но обычно оно равно удвоенному заряду иона комплексообразователя.

Во внутренней сфере связь комплексообразователя с лигандами имеет донорно – акцепторное происхождение и является ковалентной. Роль акцептора электронов выполняет комплексообразователь, имеющий свободные орбитали и достаточно большой положительный заряд ядра, а роль донора выступают лиганды, способные отдавать комплексообразователью неподеленную электронную пару. Ионы, находящиеся во внешней сфере, связаны с комплексным ионам в основном силами электростатическогого взаимодействия.

Определение заряда (z) основных частиц комплексного соединения на примере: K[AI(OH)4].

Заряд внутренней сферы комплексного соединения равен алгебраической сумме зарядов комплексообразователя и всех лигандов: [AI3+(OH-)4]z -? z=+3+4×(-1)= -1, т.е [AI(OH)4]-.

Наоборот, зная заряд комплексного иона и заряды лигандов [AI(OH)4]-), можно определить степени окисления комплексообразователя: х+ (-1)×4= -1; х= +3. Степень окисления алюминия +3.

Заряд внутренней сферы компенсируется ионами внешней сферы комплексного соединения. В приведенном примере внутренней координационной сферой является [AI(OH)4]-. Заряд аниона в этом случает компенсирует катион К+, находящиеся во внешней координационной сфере.

Классификация лигандов

В качестве лигандов выступают молекулы или ионы, содержащие донорные атомы (наиболее распространенные N, Р, О, галогены), способные отдавать комплексообразователю неподеленную электронную пару.

Число мест, занимаемых каждым лигандом во внутренней сфере комплексного соединения, называется координационной емкостью (дентатностью) лиганда. Она определяется числом электронных пар лиганда, которые участвуют в образовании координационной связи с центральным атомом.

По числу связей, образуемых лигандами с комплексообразователем, лиганды делятся на моно-, ди- и полидентатные::

1) К монодентатным относятся анионы F-, СI-, Вг-, I-, H-, CN-, NO-, SCN- и т.д., нейтральные молекулы (NH3, амины, например, первичные RNH2 (R — органический радикал), молекулы воды и т. д.), имеющие только один донорный атом.

2) К бидентатным лигандам относятся молекулы или ионы, содержащие две функциональные группы, способные быть донором двух электронных пар. Например,

Основные положения координационной теории Вернера. Природа химической связи в комплексных соединениях. - student2.ru Молекула этилендиамина Основные положения координационной теории Вернера. Природа химической связи в комплексных соединениях. - student2.ru Дианион щавелевой кислоты Основные положения координационной теории Вернера. Природа химической связи в комплексных соединениях. - student2.ru

3) Кполидентатным лигандам можно отнести 6-дентатный лиганд тетраанион этилендиаминтриуксусной кислоты (ЭДТА):

Основные положения координационной теории Вернера. Природа химической связи в комплексных соединениях. - student2.ru

Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой — между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония. Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения, так и связью, образующейся за счёт неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов.

Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы.

При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава.

Наши рекомендации