Наибольшее и наименьшее значения функции.

Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x, заданная на отрезке [0; 1], достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x0 всегда найдётся точка этого интервала, лежащая правее (левее) x0, и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x0. Аналогичные утверждения справедливы для функций многих переменных.

Метод Лагранжа.

Пусть дана квадратичная форма

Наибольшее и наименьшее значения функции. - student2.ru

от ппеременных х 0, x1,..., х п. с коэффициентами из поля k характеристики Наибольшее и наименьшее значения функции. - student2.ru Требуется привести эту форму к канонич. виду

Наибольшее и наименьшее значения функции. - student2.ru

при помощи невырожденного линейного преобразования переменных. Л. м. состоит в следующем. Можно считать, что не все коэффициенты формы (1) равны нулю. Поэтому возможны два случая.

1) При некотором g, Наибольшее и наименьшее значения функции. - student2.ru диагональный коэффициент Наибольшее и наименьшее значения функции. - student2.ru Тогда

Наибольшее и наименьшее значения функции. - student2.ru

где форма f1 (х).не содержит переменную xg.2) Если же все Наибольшее и наименьшее значения функции. - student2.ru но Наибольшее и наименьшее значения функции. - student2.ru то

Наибольшее и наименьшее значения функции. - student2.ru

где форма f2 (х).не содержит двух переменных xg и xh. Формы, стоящие под знаками квадратов в (4), линейно независимы. Применением преобразований вида (3) и (4) форма (1) после конечного числа шагов приводится к сумме квадратов линейно независимых линейных форм. С помощью частных производных формулы (3) и (4) можно записать в виде

Наибольшее и наименьшее значения функции. - student2.ru

метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции — т. н. функции Лагранжа.

Для задачи об экстремуме функции f (х1, x2,..., xn) при условиях (уравнениях связи) φi(x1, x2, ..., xn) = 0, i = 1, 2,..., m, функция Лагранжа имеет вид

Наибольшее и наименьшее значения функции. - student2.ru

Множители y1, y2, ..., ym наз. множителями Лагранжа.

Если величины x1, x2, ..., xn, y1, y2, ..., ym суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

Наибольшее и наименьшее значения функции. - student2.ru i = 1, …, n; Наибольшее и наименьшее значения функции. - student2.ru i = 1, …,m,

то при достаточно общих предположениях x1, x2, ..., xn доставляют экстремум функции f. Функция Лагранжа L применяется также при исследовании задач вариационного исчисления и математического программирования. Впервые Л. м. м. был предложен в 1797 Ж. Лагранжем в связи с задачами дифференциального исчисления.

Наши рекомендации